Premium

Degradation studies of aluminiumdoped zinc oxide

Facebook
Twitter
LinkedIn
Reddit
Email

By Mirjam Theelen, Thin Film Technology, TNO Solliance, Photovoltaic Materials and Devices, Delft University of Technology; Zeger Vroon, Thin Film Technology, TNO Solliance; Nicolas Barreau, Assistant Professor, Institut des Matériaux Jean Rouxel (IMN); Miro Zeman, Professor, Photovoltaic Materials and Devices, Delft University of Technology

This paper describes the degradation of sputtered aluminium-doped zinc oxide (ZnO:Al) layers which were exposed to damp heat (85°C/85% relative humidity). The ZnO:Al samples were characterized by electrical, compositional and optical measurements before, during and after damp heat exposure. Hall measurements showed that the carrier concentration stayed constant, while the mobility decreased and the overall resistivity thus increased. This mobility decrease can be explained by the enhancement of the potential barriers at the grain boundaries because of the occurrence of additional electron-trapping sites. X-ray diffraction (XRD) and optical measurements demonstrated that the crystal structure and transmission in the range 300 –1100nm did not change, thereby confirming that the bulk structure stayed constant. Depth profiling showed that the increase of the potential barriers was caused by the diffusion of H2O/OH- through the grain boundaries, leading to adsorption of these species or to the formation of Zn(OH)2 or similar species. Depth profiling also revealed the presence of carbon, chloride and sulphide in the top layer, which indicates the possible presence of Zn5(CO3)2(OH)6, Zn5(OH)8Cl2•H2O and Zn4SO4(OH)6•nH2O. Furthermore, white spots appeared on the ZnO:Al surface during damp heat exposure. The spots contained elements, such as silicon and calcium, which might have migrated from the glass and which reacted with species from the environment, including oxygen, carbon and chlorine.

Published In

Premium
This issue of Photovoltaics International, our 23rd, offers key insights into some of the technologies that are ready to move from lab to fab in support of these goals. ISC Konstanz offer a glimpse of what the low-cost, high-efficiency solar cells of the future might look like. On page 35 the institute’s authors give an overview of what they call Konstanz’ “technology zoo”, encompassing their so-called BiSoN, PELICAN and ZEBRA cell concepts, all of which are aimed at increasing energy yield at the lowest possible cost.

Read Next

Subscribe to Newsletter

Upcoming Events

Solar Media Events
April 10, 2024
Dallas, Texas USA
Solar Media Events
April 17, 2024
Lisbon, Portugal
Solar Media Events
May 1, 2024
Dallas, Texas
Solar Media Events
May 21, 2024
Napa, USA