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Introduction
The reliability of a product – including a photovoltaic (PV) 
product (Fig. 1), whether it is crystalline or a thin-film device (Fig. 
2) – is conceived at its design stage and implemented during its 
manufacturing. The reliability should be evaluated and qualified 
by testing, and, if necessary and appropriate, maintained in the 
field during the product’s operation. It is the general consensus that 
if reliability is taken care of at the design phase, the final cost of the 
product is minimal. If a reliability problem is detected during 
engineering, the cost of the product goes up by an order of magnitude; 
if the problem is caught at the production stage, the cost of the product 
might increase by orders of magnitude. In other words, the product’s 
reliability is too important to be left to the stage when it has already 
been fabricated – it is too late to change anything at such a late stage. 

“The product’s reliability is too important to be left 
to the stage when it has already been fabricated.”
Elevated thermal stresses are viewed – along with high humidity, 

UV radiation and other stresses [1–4] – as the major contributor 
to the finite lifetime of a photovoltaic module (PVM) [5–7], so it 
takes place in other electronics and photonics systems (see, for 
example, Schubert et al. [8] and Lau [9]). In the realization that 
design-for-reliability (DfR) effort is imperative for minimizing the 
risk that the PV product will not meet the reliability requirements, 
objectives and expectations, we address in our analysis, an 
important situation in the manufacturing process of a crystalline 
silicon (Si) -based module – the low-temperature thermally 
induced stresses. 

Thermal stress failures can be predicted and prevented 
effectively, provided that adequate predictive modelling, 
confirmed and validated by field data, is widely and consistently 
used in addition (and preferably prior) to experimental 
investigations and reliability testing [10]. Analytical modelling 
occupies a special place in the modelling effort [11–14]. Not 
only is such modelling able to clearly indicate the roles of various 
factors affecting the behaviour of the design of interest, but, more 
importantly, it is also often able to better explain the reliability 
physics behind the product performance than finite-element 
analyses (FEA) and even the experimentation. 
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ABStrAct
Low-temperature thermal stresses in a manufactured photovoltaic module (PVM) based on crystalline silicon (Si), 
before the PVM is fastened into a metal frame, are assessed using a simple, easy-to-use and physically meaningful 
analytical (mathematical)predictive model. The PVM considered comprises the front glass, ethylene vinyl acetate (EVA) 
encapsulant (with silicon cells embedded into it) and a laminate backsheet. The stresses addressed include normal 
stresses that act in the cross sections of the constituent materials and determine their short- and long-term reliability, 
as well as the interfacial (shearing and peeling) stresses that affect the assembly’s ability to withstand delaminations. 
The interfacial stresses determine also the cohesive strength of the encapsulant. The calculated data, indicate that 
the induced stresses can be rather high, especially the peeling stress at the encapsulant-glass interface, so that the 
structural integrity of the module might be compromised, unless the appropriate design-for-reliability (DfR) measures, 
including stress prediction and accelerated stress testing, are taken. The authors are convinced that reliability assurance 
of a photovoltaic (PV) product cannot be delayed until it is manufactured – such an assurance should be considered and 
secured, first of all, at the design stage.

Figure 1. typical PV device.

Figure 2. Solar cell (PV) devices.
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Figure 3. typical crystalline Si PVM (Prismark).

This paper first appeared in the sixteenth print edition of the Photovoltaics International journal, published in May 2012.
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Accordingly, in the following analysis, an easy-to-use and 
physically meaningful analytical stress model is developed for 
evaluating the low-temperature thermal stresses in a crystalline-
Si-based PVM (assembly) before it is fastened into a metal frame. 
The assembly considered comprises the front glass, ethylene vinyl 
acetate (EVA) encapsulant (with PV silicon cells embedded into it) 
and a laminate backsheet. The analysis is carried out considering a 
PVM as shown in Fig. 3.

“Thermal stress failures can be predicted and 
prevented effectively, provided that adequate 

predictive modelling, confirmed and validated by 
field data, is widely and consistently used.”

Analysis

Assumptions

•	 A structural analysis (strength-of-materials) approach can be 
applied for the evaluation of the bow and the stresses. As long 
as this approach is used, no singular stresses can possibly occur. 
From the theory-of-elasticity standpoint, the predicted stresses 
can be viewed as suitable design parameters that characterize 
the state of stress at the assembly edges. 

•	 The assembly constituents (components) can be treated as 
thin, elongated plates, experiencing small deflection, so that the 
engineering theory of such plates (see, for example, Suhir [15]) 
can be employed.

•	 The interfacial shearing stresses and the assembly curvature 

can be evaluated without considering the effect of the peeling 
stresses; the latter stresses can be subsequently determined from 
the evaluated shearing stresses and the curvature.

•	 Thermal stresses caused by the interaction of the dissimilar 
EVA and Si materials within the inhomogeneous (composite) 
encapsulant do not have to be considered when evaluating the 
forces acting in the PVM components, including the thermally 
induced force in the inhomogeneous encapsulant itself. 
These forces can be evaluated by assessing and considering 
the effective mechanical characteristics – Young’s modulus, 
Poisson’s ratio, coefficient of thermal expansion (CTE) – of the 
EVA-Si composite.

•	 The above-mentioned stresses caused by the interaction of the 
dissimilar EVA and Si materials within the inhomogeneous 
(composite) EVA encapsulant can be evaluated from the 
computed force acting in the EVA-Si composite. This force is 
considered to be an external mechanical force applied to the 
EVA-Si composite layer. 

•	 It is assumed that there might not be a good adhesion between 
the butt ends of the Si device and the EVA, so that the 
interaction of these materials is due only to their interfacial 
interaction. This seems to be a reasonable, and certainly a 
conservative, assumption.

Figure 4. tri-material PV-module schematics.
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Normal stresses in the assembly mid-portion 
The mid-portion addressed (Fig. 4) consists of component 1 
(glass), component 2 (encapsulant with the embedded Si devices) 
and component 3 (backsheet). The equations of compatibility of 
the longitudinal thermally induced strains in such a tri-material 
assembly (that has been fabricated at an elevated temperature and 
subsequently cooled down to a low temperature) can be written as
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are the CTEs of the materials; ∆t is the 
change in temperature from the manufacturing temperature to the 
low temperature of interest; 
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compliances of the materials; 
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 are their effective 
 
Young’s moduli(that consider the two-dimensional state of 
stress); Ei,i=1,2,3, are the actual Young’s moduli of the materials 
(in the case of the encapsulant composite, it is the modulus of the 
composite, considering the EVA and Si moduli); vi,i=1,2,3, are 
Poisson’s ratios; h i,i=1,2,3, are the layer thicknesses; and 
Ti

0,i=1,2,3, are the thermally induced forces caused by the 
dissimilar materials in the assembly. The first terms in the 
expressions of Equation 1 are stress-free (unrestricted) thermal 
contractions, and the second terms are displacements caused by 
the thermal forces. In addition to the strain compatibility 
conditions given in Equation 1, by using the equilibrium 
condition
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the following expressions for the induced forces are obtained:
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  (3)

The stresses acting in the components’ cross sections can be 
found by dividing the forces in Equations 3 by the thickness of the 
corresponding component. 

Interfacial shearing stresses

Basic equations
The longitudinal interfacial displacements of the assembly 
components can be expressed, in accordance with the assumptions 
taken, by the formulas:
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  (4)

where u11(x) is the displacement of component 1 (glass) at 
its interface 1 with component 2 (encapsulant); u21(x) is the 
displacement of component 2 (encapsulant) at interface 1; u22(x) 
is the displacement of component 2 (encapsulant) at its interface 
2 with component 3 (backsheet); u32(x) is the displacement of 
the component 3 (backsheet) at interface 2; and ∆t is the change 

in temperature (from the manufacturing temperature to the low 
temperature of interest). Also,
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are the interfacial compliances of the components [16];
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are the thermally induced forces acting in the components’ cross 
sections; Gi, i = 1, 2, 3, are the shear moduli of the materials; 
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 is 
half the assembly length; τi(x), i = 1, 2, is the interfacial shearing 
stress at the ith interface; and w(x) is the deflection of the assembly. 
The origin ‘0’ of the longitudinal coordinate x is at the mid-cross 
section of the assembly in the mid-plane of the intermediate 
component 2 (encapsulant).

The conditions u11(x) = u21(x) and u22(x) = u32(x) of the 
compatibility of the interfacial displacements lead to the following 
equations for the thus-far unknown axial (longitudinal) forces 
Ti(x), i = 1, 2, 3:
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where
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are the interfacial compliances of the interfaces 1 (between the 
glass and the encapsulant) and 2 (between the encapsulant and the 
backsheet), respectively.

The equations of bending of the assembly components can be 
written as follows:
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where
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are the flexural rigidities of the assembly components. Summing 
up Equations 9, we have
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where D = D1 + D2 + D3. Differentiating Equations 9 with 
respect to the coordinate x and substituting the expression for the 
curvature w”(x) determined from Equation 11 into the obtained 
relationships, the following equations for the unknown distributed 
forces T1(x) and T3(x) are obtained:
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where the axial compliances

 

 [ ] ξξτ=+−=ξξτ= 
−−

 











  

τ

                

 














∆α−α=′
+

−τκ−ξξλ+λ+ξξλ

∆α−α=′
+

+τκ−ξξλ+ξξλ+λ






















































     κκκ +=   κκκ +=      

                 

 










 








 −=′′−=′′=′′ 



    


















 ==
ν−

=   

               


   





 




 +
−

+
=′′   

           



  




∆α−α−=λ+λ−′′κ

∆α−α−=λ+λ−′′κ






  

















−
++

=

++
+

=

++
+

=

































λλ

λλλ

λλλ









   

                   



   

 

  
  (13)

take into account the effect of the flexural rigidity D of the assembly. 
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Equations 13 indicate that the consideration of the finite flexural 
rigidity of the assembly results in higher axial compliances. The 
solutions to Equations 12 must satisfy the zero boundary conditions

T1(
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These conditions consider that no external axial forces are 
applied at the end cross sections of the assembly. After the forces 
T1(x) and T3(x) are found, the interfacial shearing stresses τ1(x) and 
τ2(x) can be determined, by differentiation, from the first and the 
third formulas of Equations 6:
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Separating the functions T1(x) and T3(x) in Equations 12, we 
obtain the following two inhomogeneous differential equations

 


           τ  τ    


  ′=τ′=τ   
 

  






γ=γ+′′+−

γ=γ+′′+−



















































 
















 

λλ

λ
−=γ

κ

λ
=

κ

λ
=  

 
  

 





 











 =γ+′′+−  
                 


 











 =γ++−  
    























+

γ−+
+

=




















    

τ
τ
 
         κ→∞       
  
κ→∞



 












  +=+=  



 
















 −=−=  











−=







−=
 









 



 



 (16)

where the notations:
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are used. The forces T1
0 and T3

0 acting in the mid-portion of 
the assembly are expressed by the first and the third formulas in 
Equations 3.

Parameter of the interfacial shearing stresses
The homogeneous equation
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that corresponds to the two inhomogeneous differential 
Equation 16 turns out to be the same for both of those equations. 
The characteristic equation
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leads to the following formula
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for the parameter k of the interfacial shearing stress. Here k1 and 
k2 are the parameters of the shearing stresses τ1(x) and τ2(x), in the 
case of a bi-material assembly consisting of components 1 and 2, or 
of components 2 and 3, respectively. Indeed, the case of a bi-material 
assembly consisting of components 1 and 2 can be obtained by 
assuming infinitely large compliance of interface 2 (k23 → ∞). The 
second formula in Equations 17 then results in a zero k2 value, and 
Equation 20 yields k = k1. Similarly, the result for the case of an 
assembly comprising components 2 and 3 can be obtained by letting 
k12 → ∞ in Equations 17 and 20. Consequently, as follows from the 
first formula in Equations 17, k1 = 0, and Equation 20 yields k = k2.

Axial forces at the assembly ends 
The particular solutions to the two inhomogeneous differential 
equations (Equations 16) are T1(x) = T1

0 and T3(x) = T3
0, 

respectively. These solutions are the thermally induced forces in 
the mid-portion of the assembly. Considering that the functions 
T1(x) and T3(x) should be symmetric with respect to the mid-cross 
section (x = 0), the general solutions to the differential Equation 16 
could be sought as
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where C1 and C3 are constants of integration. The conditions 
expressed by Equation 14 yield:
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so that the distributed longitudinal forces T1(x) and T3(x) acting 
in the cross sections of components 1 and 3 are

 


           τ  τ    


  ′=τ′=τ   
 

  






γ=γ+′′+−

γ=γ+′′+−



















































 
















 

λλ

λ
−=γ

κ

λ
=

κ

λ
=  

 
  

 





 











 =γ+′′+−  
                 


 











 =γ++−  
    























+

γ−+
+

=




















    

τ
τ
 
         κ→∞       
  
κ→∞



 












  +=+=  



 
















 −=−=  











−=







−=
 









 



 



 (23)

The force T2(x) acting in the encapsulant composite 
(component 2) can then be determined as
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where the force T2
0 acting in the mid-portion of a large assembly 

is given by the second formula in Equations 3.

Predicted interfacial shearing stresses
By taking into account Equations 23 for the distributed 
longitudinal forces, the interfacial shearing stresses τi(x), i = 1, 2, 
can be determined, by differentiation, from Equations 15:
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Peeling stresses

Basic equations
In order to obtain the governing equations for the interfacial peeling 
stresses p1(x) and p2(x) (the interfacial normal stresses acting in the 
through-thickness direction of the assembly), account should be 
taken of the fact that the deflection functions wi(x), i = 1, 2, 3, of 
the assembly components are somewhat different. In the following 
analysis it is assumed that these functions should satisfy the 
following conditions of compatibility:
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where δ12 and δ23 are the interfacial through-thickness 
compliances of the assembly components. These compliances can 
be determined experimentally, or estimated using the following 
approximate formulas:
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The equations of bending (Equations 9) should also be modified. 
With consideration of the peeling stresses pi(x), i = 1, 2, and 
different deflection functions wi(x), i = 1, 2, 3, of the assembly 
components, these three equations could be written as
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The first terms on the right-hand side of these equations are due to 
the axial thermally induced forces; the second terms are the bending 
moments due to the peeling stresses. Eliminating the deflection 
functions wi(x), i = 1, 2, 3, from Equations (26) and (28), the following 
equations for the peeling stress functions pi(x), i = 1, 2, can be obtained:
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are parameters of the interfacial peeling stresses of bi-material 
assemblies consisting of components 1 and 2, and components 2 
and 3, respectively. From Equations 28 we find, by differentiation,
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As evident from these equations, the lateral loadings acting on 
components 1 and 3 are
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and are due to both peeling and shearing interfacial stresses. 
Since no loadings other than qi(x), i = 1, 2, act in the through-
thickness direction of the assembly, these loadings must be self-
equilibrated:
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Equations 32 and the conditions in Equations 33 therefore 
result in the following equilibrium conditions for the peeling stress 
functions pi(x), i = 1, 2:
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These conditions indicate that the peeling stress loading should 
be self-equilibrated as well. 
  
Parameter of the peeling stresses
After separating the functions pi(x), i = 1, 2, in Equations 29, we 
obtain the following two equations of the eighth order for the 
interfacial peeling stresses acting at the two interfaces:
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where
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The solution to the homogeneous equation
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can be sought in the form
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Here, C0 and C2 are the constants of integration, s is the 
unknown parameter of the interfacial peeling stress and the 
functions Vi(sx), i = 0, 1, 2, 3, are expressed as
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The functions Vi(sx),i=1,2,3, obey the following simple rules of 
differentiation:
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These rules make the use of these functions of convenience. 
Introducing the sought solution in the form of Equation 38 into 
the homogeneous Equation 37, we conclude that the following 
equation for the factor s of the interfacial peeling stress should be 
fulfilled:
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The solution to Equation 41 is given by
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When the through-thickness interfacial compliance δ12 or the 
compliance δ23 is infinitely large (such a situation corresponds to 
the case of a bi-material assembly), then, as evident from Equation 
36, δ = 0. If such a bi-material assembly consists of components 
1 and 2, then, in addition to δ = 0, one should also let δ23 → ∞; 
therefore, following from the second formula in Equations 30, s2 = 
0. Equations 41 and 42 then yield s = s1. Similarly, for a bi-material 
assembly consisting of components 2 and 3, one obtains s = s2.

Predicted peeling stresses
Using Equations 25 for the shearing stresses, Equations 29 result in the 
following equations for the interfacial peeling stresses pi(x), i = 1, 2:
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The particular solutions to these inhomogeneous equations are
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Introducing these solutions into Equations 43 and solving the 
resulting equations for the constants C1* and C2*, we obtain the 
following formulas for these constants:
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The general solutions to the inhomogeneous Equations 43 can 
be sought in the form:
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where A’0, A’2, A”0 and A”2 are the constants of integration. 
Introducing the solutions given by Equations 46 into the 
equilibrium conditions of Equations 34, we obtain the following 
equations for the constants A’0, A’2, A”0 and A”2 of integration:
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and
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The solutions to Equations 47 and 48 are
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 (49)

where the functions χ0(s,k) and χ2(s,k) are expressed as follows:
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Thus, the peeling stresses pi(x), i = 1, 2, can be evaluated using 
the formula
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 (51)

where the constants C1* are given by Equations 45.

In the case of a long assembly (large 
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 value) with sufficiently stiff 
interfaces (large k and s values), the following simplified relationships 
can be obtained for the functions given by Equations 39:
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  (52)

Equations 50 then yield
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and solving Equation 51 results in the following simple formula 
for the distributed peeling stresses:
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In the case of s << k, Equation 54 yields p(l) = C1*. Hence, 
the constants C1* expressed by Equations 45 are, in effect, the 
maximum peeling stresses at the ends of an assembly for which 
the parameter of the peeling stress s (through-thickness interfacial 
compliance) is significantly smaller than the shearing stress 
parameter k (the longitudinal compliance). At the assembly end 
we have
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This relationship indicates that, for the given (calculated) C1* 
values, the peeling stresses at the assembly ends are equal to these 
values for zero 
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 ratios of the parameters of the interfacial peeling 
and shearing stresses, as well as for the situation when this ratio is 
equal to one. Equation 55 also indicates that the peeling stresses 
at the assembly ends have a minimum of  for the stress parameter 

Figure 5. Element of a Si-EVA composite.
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ratio of 0.5, and that the peeling stresses can be very high for high 
stress parameter ratios. 

Stresses in the composite EVA-Si layer

the problem
The objective of the following analysis is to address the state of 
stress within the EVA-Si composite layer (Fig. 5). In addition to 
the thermal contraction mismatch forces due to the dissimilar Si 
and EVA materials, the layer is subjected to an external tensile 
force 
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 . This force is determined on the basis of the previous 
analysis, when the effective mechanical characteristics of the 
Si-EVA composite were considered. In the following analysis, 
the actual properties of the EVA and Si materials are taken into 
account, in addition to the geometric characteristics of the Si cells 
(length and thickness) and the thickness of the EVA encapsulant. 
The analysis is limited to the evaluation of the normal stresses 
acting in the cross sections of the Si cells and the EVA materials, 
and the interfacial shearing stresses that are responsible for the 
possible delamination of the EVA encapsulant from the Si cells.

Basic equation
The induced axial forces T21(x) and T21(x), acting in the Si device 
(material 2-1) embedded into the EVA encapsulant and acting in 
the encapsulant itself (material 2-2), respectively, and caused by 
the combined action of the thermal and mechanical loading on 
component 2 of the PV assembly, are related as follows:
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The origin of the coordinate x is in the mid-cross section of the 
Si cell. In Equations 56, τ(x) is the interfacial shearing stress and a 
is half the Si cell length. Since the upper and the lower parts (layers) 
of the EVA encapsulant are assumed to be identical, it follows 
that 1) the stress τ(x) is the same at the upper and lower Si-EVA 
interfaces, and 2) the assembly as a whole does not experience 
bending deformations. Clearly, 
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 (the shearing 
 
stress is anti-symmetric with respect to the mid-cross section of 
the Si cell). As evident from Equations 56, the boundary conditions     
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 (this condition is based on our assumption that no 
external forces are applied directly to the butt end of the Si cell) 
and 
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 are fulfilled for the forces T21(x) and T22(x). From 
Equations 56 we find, by differentiation,
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 (57)

We seek the longitudinal interfacial displacements of the Si cell 
and the EVA encapsulant as follows:
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Property  Thickness  Young’s Poisson’s 2D Young’s Shear CTE 
   h [mm] Modulus E, Ratio Modulus Modulus 
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       ***
      [kg/mm2] [1/°C] 
       [kg/mm2]

# Material   Input data

1 Glass 5.00 7150 0.22 9167 2930 5.0

21 Silicon 0.20 16000 0.28 22222 6250 2.6

22 EVA 0.30 100 0.35 154 100 100

2 Si-EVA  0.50 5506 0.326 8169 2076 42.5 
 Composite*

3 Backsheet** 0.25 300 0.40 500 107 33

 
* Properties were evaluated for a segment of the Si-EVA composite structure (Fig. 2) using the formulas

 

 

 

  In these formulas it is assumed that the length of the Si-EVA segment is 2l=0.80mm, the length of the Si cell in it is 2a=0.68mm, the cell 
thickness is h21=0.20mm, the total thickness of the Si-EVA composite is h21+h22 =0.50mm, and the thickness of the EVA above the Si cell is 
the same as below it and equal to 0.15mm.

** Polyethylene terephthalate (PET) polyester

*** For details see http://www.americanelements.com/thermal-expansion-coe.html or 

  http://www1.eere.energy.gov/solar/pdfs/pvmrw2011_p41_csi_ebert.pdf. The change in temperature from the EVA curing temperature of 
158°C to the room temperature is assumed to be ∆t = 30°C.
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table 1. Material properties of the PVM for the numerical example.
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where a21 and  a22 are the CTEs of the Si cell and the EVA 
materials, respectively; ∆t is the change in temperature; 
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 are the axial compliances of the cell and the 
encapsulant; h21 is the cell thickness; h22 is the thickness of the 
encapsulant above or beneath the die; E21 and E22 are the Young’s 
moduli of the Si and the EVA materials; and v21 and v22 are their 
Poisson’s ratios. Also,
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 (59)

are the interfacial shearing compliances of the Si cell and 
each of the EVA layers (above and below the cell), respectively,  
 
and  
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 are the shear moduli of the 
materials. The first of Equations 59 was obtained in Suhir [18] for 
a strip subjected to a shear load distributed over both of its long 
edges and symmetric with respect to its mid-cross section and to 
the horizontal mid-plane of the strip. The second of Equations 
59 was obtained in Suhir [17] for a strip subjected to a shear load 
distributed over one of its long edges and symmetric with respect 
to the mid-cross section of the component. 

The condition of the compatibility of the displacements given by 
Equations 58 can be written as

 

 

 τ 
  
         τ            

  =
−





ξξτ 


  =± 

              =±            


 




   ′−=′=τ 

















ξτκξξλα

ξτκξξλα

++∆−=

−+∆−=















 α  α              ∆    









ν

λ
−

= 



 




ν
λ

−
=   

      

 ν  ν 

 
 


 


=κ 

 


 


=κ 

                   


 




ν+
=

 
 




ν+
=

      


      
                    



    τκ+= 





 


=κ 

   

 τ 



















 





 =+−
κ

ε
ξξ

κ

λ
ξξ

κ

λ
τ 

 (60)

where 
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 is the interfacial compliance of an additional 
layer, if any, between the Si cell and the encapsulant, h0 is its 
thickness and G0 is the shear modulus of the material. Introducing 
Equations 58 into the compatibility condition of Equation 60, we 
obtain the following basic equation for the interfacial shearing 
stress τ(x):
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where 
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 is the thermal mismatch strain 
and 
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 is the total interfacial compliance of the 
assembly. The integrands in Equation 61 are related to the interfacial 
shearing stress τ(x) by the formulas expressed by Equations 56. 

From Equation 61 we obtain, by differentiation,
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This relationship allows the boundary conditions 
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and 
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 for the forces to be translated into the boundary 
condition for the shearing stress function r(x) as follows:
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 (63)

Differentiating Equation 62 with respect to the coordinate x 
yields the following simple equation for the interfacial shearing 
stress function r(x):
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 (64)

where 
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  is the parameter of the interfacial shearing 
stress, and 
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 is the total axial compliance of the Si-EVA 
assembly. 

Solution to the basic equation
Equation 64 has the following solution that satisfies the boundary 
condition of Equation 63:
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 (65)

where T = Tm - Tt is the force acting in the mid-portion of a 
Si-EVA assembly with a sufficiently long cell (large a values) and/
or with a sufficiently stiff interface (large k values); 
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 is the 
 
tensile force due to the ‘external’ tensile force; 
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and 
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is the compressive force in the Si cell caused by the thermal 
contraction mismatch of the Si and the EVA materials. 

The reduction factor 
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 in front of the force 
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 is the 
ratio of the axial compliance of the EVA layer to the total axial 
compliance of the Si-EVA assembly. When the encapsulant 
is significantly more compliant than the Si cell 
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, the ratio 
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 is close to 1, so that the entire external force 
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 is transmitted
to the Si device. In this case the encapsulant exhibits tensile 
thermal loading only, i.e. 
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. In the hypothetical
 
situation of the encapsulant layer being appreciably less compliant 
than the Si cell 
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 – which is certainly not the case for the 
design in question – the ratio 
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. This ratio is close
 
to zero when the EVA encapsulant is significantly less compliant 
than the Si cell. The Si cell consequently becomes stress free, and it 
is the encapsulant that experiences the full magnitude of the force 
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. 
In the case of sufficiently large and/or stiff Si-EVA assemblies 

(ka ≥ 2.5), the solution given by Equation 65 can be simplified to 
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. This formula indicates that the shearing stress
 
at the Si-EVA interface concentrates at the Si-EVA assembly ends, 
and decreases exponentially with increasing distance from the 
ends. In the hypothetical case of a small and/or compliant Si-EVA 
assembly (ka ≤ 0.25), the solution (Equation 65) can be simplified 
to 
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. In this case the stress is distributed linearly along 
 
the Si-EVA interface. As follows from Equation 65, the maximum 
shearing stress τmax takes place at the end cross sections x = ±a 
and is given by 
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, where 
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 is the
 
maximum interfacial shearing stress in an infinitely long assembly, 
and the function χτ(ka) = tanh ka accounts for the effect of the 
assembly size.

Introducing the solution (Equation 65) into the formulas 
(Equations 56), we obtain
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 (66)

The force T21(x) acting in the Si cell is greatest in its mid-cross 
section (x = 0) and is given by 
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, where the function   
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 takes into account the effect of the Si-EVA
 
assembly size. For sufficiently long assemblies (large a) and/or 
assemblies with stiff interfaces (large k), so that ka ≥ 2.5, we 
have T21(0) = T For a short (small a) and/or compliant (small k) 
Si-EVA assembly (ka ≤ 0.25), the first of Equations 66 yields 
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, where 
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 is the force in the mid-cross
 
section of the device. The corresponding normal stress can be 
found by dividing the force T21(x) by the Si cell thickness h21. If the 
product ka is small, then the force T21(0) is small as well. Thus, for 
lower induced stresses in the cwell, there is an incentive to employ, 
if possible, small-sized cells and compliant bonding layers, if any, 
between the Si and the EVA materials.

Numerical example
Fig. 2 shows the structure under consideration, and its material 
characteristics (input data) are given in Table 1. The calculations 
are set forth below.
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Flexural rigidities of the assembly components
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Parameter of the interfacial shearing stresses
  

 

• 





























−

−−

=

=++
+

=++
+

= λλλ






























−

−−

=

=++
+

=++
+

= λλλ



























−

−

−=

=−
++

=−
++

= λλ


• 











 


 −===κ 




 




 


 −===κ 











 


 −===κ 

• 
 

  −=+= κκκ   
  −=+= κκκ 

• 









 


 −

−

−

=== 



κ

λ
 








 


 −

−

−

=== 



κ

λ





 






 =

−
−=−=

−−

−




λλ

λ
γ 















 








−=




















−+=






















+

−+
+

= 

 γ 

• 











































−=−=
++

−−
=

=
++

−+−
=

=∆
++

−+−
=

−

−

−−−

−−

−−−−−−

−−−−

λλλλλλ

ααλααλ


































=
+

=

=
−+−

=∆
++

−+−
=

−

−−

−

−−−−

λλλλλλ

ααλααλ



 
 

thermally induced forces acting in the cross sections of the 
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Normal stresses in the mid-portions of the glass and the 
backsheet
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on the induced thermal force
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‘Mechanical’ tensile forces acting on the EVA and Si material 
within the area where Si cells are located 
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Normal stress in the EVA layer 
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Parameter of the peeling stresses
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constants in the expression for the peeling stress functions
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ratio of the peeling stress parameter to the shearing stress 
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The calculated stresses are summarized in Table 2. The computed 
data indicate that the interfacial peeling stresses considerably 
exceed the interfacial shearing stresses and could possibly 
lead, in combination with the effect of the shearing stresses, to 
delaminations. These data also indicate that delaminations at the 
glass-encapsulant interface are more likely than delaminations at 
the backsheet-encapsulant interface. As for the stresses acting in 
the components’ cross sections, these are greatest in the backsheet, 
and need to be taken into consideration when the material and the 
thickness of the backsheet are selected and established.

“Important as the reliability and performance 
of a PV device itself is, it is the module –  

or the ‘package’ – that is the most  
vulnerable element of a PVM.”

Some major challenges and future work
Since solar energy is abundant worldwide, cell/PV technology is 
an attractive option in the renewable energy field, but there is still 
a long way to go before viable and promising devices based on PV 
technology become reliable and cost-effective products. Here are a 
few of the main questions that are typically asked and some of the 
major challenges envisioned:

 
•	 Since some (far from perfect) PV products have been in the 

field for just a couple of years, no well-established qualification 
specifications and test methodologies exist yet. For this reason, 
the only way to make adequate short- and long-term reliability 
predictions, as far as the possible failure modes and mechanisms 
are concerned, is through properly designed, carefully 
conducted and clearly interpreted failure-oriented accelerated 
testing (FOAT). What stimuli and reliability criteria should be 
included in such FOAT methodologies and testing procedures? 
Should we be aiming (perhaps unrealistically) for a 20-year PVM 
lifetime, or possibly settle for a shorter lifetime?

•	 How will actual loading (thermal, dynamic) and environmental 
(temperature,  humidity,  earthquake, etc .)  conditions 

Material  Stress in the Maximum interfacial 
(layer) component  stresses [kg/mm2]
 cross section  
 [kg/mm2] Shearing Peeling

Glass  –9.6   

Glass-EVA Interface  87.5 593.7

EVA +31.3  

EVA-Si Interface  38.9 -

Si +45.3  

Si-EVA Interface  38.9 -

EVA +31.3  

EVA-Backsheet Interface  18.3 105.6

Backsheet +129.6

table 2. calculated stresses for the numerical example.
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encountered in different geographic areas affect the useful and 
cost-effective lifetime of the PV system of interest, and what 
should be the criteria?

•	 The major effort today centres on improving the effectiveness 
and reliability of PV devices per se. However, it is clear that, 
important as the reliability and performance of a PV device 
itself is, it is the module – or the ‘package’ – that is the most 
vulnerable element of a PVM. Should the PVM engineering 
and business-oriented communities, concurrently with the 
continuing effort to make the PV devices more efficient and 
more robust, place more emphasis on the general reliability of 
PVM systems (structures)? Are the existing PV qualification 
test methodologies and procedures – such as IEC 61215 (for 
crystalline-Si-based devices), IEC 61646 (for thin-film-based 
devices) and IEC 62108 (for concentration-based devices 
(CPV)) – adequate? Do PV industries need new approaches to 
qualify their products?

•	 The most critical aspect of today’s PV technologies seems to 
be the way(s) in which a PVM is packaged (optical, electrical, 
materials, thermo-mechanical, etc.) to protect the given PVM 
design from the harsh environment, in order to enhance what 
the PV devices can do and to guarantee, with a reasonably high 
certainty, their durability. There is a crucial need to consider 
and to develop effective and goal-oriented PVM packaging 
directions – what is the best way to do this and how can it be done 
in a timely fashion? To what extent could previous experience, 
accumulated in the fields of electronics, opto-electronics, 
photonics, MEMS and MOEMS technologies, be employed?

•	 In many areas of opto-electronic engineering, predictive 
modelling has proved to be a highly useful and time-effective 
means of both understanding the physics of failure and 
designing the most helpful FOAT. There is certainly a need 
for developing such models in the PV field, with an emphasis 
on validating observed field failures. Which models might 
be needed most: thermal, environmental or mechanical – or 
combinations of all these? 

•	 There are indications that some PVM degradation (ageing) and 
failure mechanisms have been found in the field that were not 
detected by the existing accelerated tests, such as temperature 
cycling, temperature-humidity bias (THB), nominal operating 
cell temperature (NOCT), hail (solid precipitation) tests and 
high-voltage (high-potential, or ‘high-pot’) tests. How can a 
minimum list of crucial tests and stimuli be established?

•	 There are currently several different PV technologies 
(key approaches to solar-based electricity), such as solar 
thermal, crystalline Si, thin film, concentrators and, perhaps, 
combinations of these. Each of these technologies has its merits 
and shortcomings. Should the packaging and FOAT approaches 
be developed separately for all these technologies, or might 
there be unified and cost- and time-effective ways of addressing 
reliability and packaging issues for them? Is there a possibility 
that one or two existing PV technologies will predominate (or 
perhaps already do so), and that packaging and reliability efforts 
should be directed accordingly?

•	 There are many PVM reliability concerns that are more or less 
well established – some examples are: 

 – if new materials and/or new physical (structural) designs 
are introduced, how will this affect the short- and long-term 
reliability of the PV device and/or the PVM and/or the PVM 
system as a whole? 

 – to what extent could impurities in the silicon result in light-
induced degradation of the material? 

 – how might arcing, grounding, power conditioning and other 

system-related problems affect the PV system’s reliability?
 – given that annual degradation rates of typically 0–1% might 
be difficult to measure, how could one measure, using existing 
metrological techniques, even lower degradation rates (less 
than 0.1%) in the field? Could better metrological means be 
developed, and what role might modelling play in such a 
situation?

 – edge seals in the moisture-resistant device structures 
may allow water penetration; at the same time it has been 
established that thermal stresses due to dissimilar materials 
concentrate at the assembly ends. How could this thermo-
mechanical-environmental problem, as well as many other 
adhesion-related problems, be resolved?

•	 The process involved in going from creating something in a lab 
to marketing an industrial product is a lengthy one. Could this 
be shortened?

•	 The measurement of degradation rates takes several years. 
Could physically meaningful ALT (accelerated-life test)-FOAT 
methodologies be developed?

Based on the authors’ expertise in many areas of reliability and 
packaging of electronic systems, a list is presented below of the 
most crucial engineering problems that could be addressed and 
successfully solved, and that are, at the same time, of the utmost 
interest to the PV manufacturing community.

•	 Review and analyze existing PVM physical designs and the 
geographical areas in which these modules are, or will be, 
installed.

•	 Review and analyze the existing qualification testing 
specifications and test conditions used by Flextronics to qualify 
its PVM systems.

•	 Review and analyze any observed field failures of the PV 
products.

•	 Address the adequacy of the existing Flextronics specifications 
and accelerated test methodologies and practices from the 
standpoint of their ability to prevent field failures.

•	 Improve in a timely fashion and to the extent possible the 
existing qualification methodologies.

•	 Select the most indicative and most vulnerable structural item 
(the ‘bottle-neck’) in the existing Flextronics PVM design, and 
then consider the application to the selected structural element 
of the recently suggested (rather general) novel and effective 
approach [18–20] for qualifying electronic and similar products.

•	 Design an adequate FOAT procedure, conduct the accelerated 
life testing, develop the appropriate predictive models and 
predict the reliability of failure of the selected structural element 
in the field.

•	 On the basis of the results obtained, make a prediction, using 
primarily predictive modelling approaches and techniques (both 
computer-aided and analytical), of the probability of failure 
of the entire PVM system in the field under the anticipating 
loading conditions and after the given time in operation.

•	 Establish what changes, if any, to the existing design and in the 
qualification specifications could or should be made.

Experimental and modelling (both computer-aided and 
analytical) approaches should and will be widely used to address 
these issues. 
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“The model can also be used for stress analysis 
and reliability predictions for bonded joints in 

applications outside of the PV technology field.”
conclusions
Low-temperature thermally induced stresses in a crystalline-Si-
based PVM (assembly) have been evaluated on the basis of a rather 
general analytical (‘mathematical’) predictive stress model for a 
tri-material assembly. A special predictive model was developed 
for the evaluation of the effective elastic constants and the CTE 
of component 2 (EVA-Si composite) consisting of a low-modulus 
and high-expansion EVA encapsulant and high-modulus and low-
expansion Si cells, so that the module of interest could be treated as 
a tri-material body. The calculated data indicated that the induced 
stresses can be rather high, especially the peeling stress at the glass 
interface, which means that the structural integrity of the PVM might 
be compromised unless the appropriate DfR measures are taken. It is 
well known that the reliability of a product should be conceived and, 
to the extent possible, assured at the design stage – as far as such an 
effort is concerned, the developed model can be helpful. The model 
can also be used for stress analysis and reliability predictions for 
bonded joints in applications outside of the PV technology field.
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