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Introduction
One of the major classical problems 
in operations research is the decision 
of optimal location, a subject of great 
importance in applications such as 
production, logistics, life in general and 
even military affairs. The problem has 
recently attracted a lot of interest in the 
fields of operational research, engineering 
science and management, as well as among 
computer scientists: indeed, many new 
problems with a practical application 
background are emerging as the study of the 
location problem becomes more profound. 
Among all the location research fields, 
facility location is one of the most important 
– the range of facilities may include offices, 
warehouses, batch plants, maintenance 
facilities, labour force residences and 
fabrication shops. The approaches and 
solutions to the problem of facility location 
mainly rely on operational research, 
topology, management and so on [1,2].

The choice of PV array combiner box 
location discussed in this paper belongs 
to the facility location problem; this is 
an important element of the whole PV 
system design because the decision will 
significantly affect cost and efficiency, as 
well as other aspects of the PV system. 
Since the cost of DC cabling is often directly 
proportional to the distance between 
the PV strings and the combiner box, 
the location of the combiner should be 
sufficiently optimal to minimize both the 
cost of the DC cables and the power losses 
in the cables, which in turn will enhance 
system efficiency. This paper proposes 
a solution to the problem of combiner 
location using a mathematical optimization 
approach based on the Manhattan metric 
algorithm (distance between two facilities 
measured along the x and y axes) [1,2]. 
The mathematical model for the minisum 
location of the combiner is established by 
taking the real arbitrary PV system array 

into consideration, and then obtaining the 
target function and its optimal solution. 
Examples of the application of the 
technique are presented for both an odd and 
an even number of PV strings.

“The location of the combiner 
should be sufficiently optimal 

to minimize both the cost of the 
DC cables and the power losses 

in the cables”
Single-combiner location model
There is generally one combiner box in a 
PV array, so this is a single-facility location 
problem. The strings of PV modules are 
connected in parallel to the combiner 
through DC cables running along the 
cable trays, which are often set vertically or 
aligned in parallel with each other.

Assumption
The objective area for the location is 
continuous, and any point is a candidate 
for the optimal solution. In addition, 
for the distance between two points, 
rectangular distance is used, which is 
approximately equal to the real distance.

Problem definition
Considering a coordinate system (x, y), 
there exists a boundary of a planar region 
with given coordinate values of a number 
of existing points. It is desired to find 
the point in the coordinate system that 
minimizes the sum of the rectangular 
distances to all the existing points.

Mathematical model
Suppose there are n  strings located 
in the PV array. A coordinate system 
(x ,  y) is established (the coordinate 

or ig in  is  at  any p osit ion)  so  that 
the coordinates of each positive or 
negative output node of the strings 
can be measured; there are therefore 
2n points in total. Here, suppose that 
(xi, yi) are the coordinates of the point 
i, while the combiner box is located at 
(xp, yp). The rectilinear, or Manhattan, 
distance between the point (xi, yi) and the 
combiner (xp, yp) is then defined as |xp – xi| 
+ |yp – yi|, for i = 1, 2, … 2n. The objective 
function of the combiner location can then 
be expressed as

 (1)

where xp ∈ [x1, x2n] and yp ∈ [y1, y2n].

Solution of the objective 
function
It is clear that Equation 1 is multinomial, 
i .e .  i t  compr ises  two indep endent 
components: the distances along the x 
and y axes, which add to the total distance 
independently of each other. Hence, the 
objective function can also be expressed as:

   (2)

that is

(3)
Hence,

 (4)

 (5)

where xp ∈ [x1, x2n] and yp ∈ [y1, y2n].
It is clear that this task can be solved 

separately for the x and y coordinates and 
then the results merged in order to obtain 
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the rectangle of minimum distance points. 
Let xp* and yp* denote the optimal answers 
for 

Min   

respectively. Thus, the coordinates of the 
optimal point of the final solution are  
(xp*, yp*). A detailed induction of the 
optimal solution of L(xp) is given next.

Suppose we have 2n points ordered by 
x, namely x1, x2, … x2n, as shown in Fig. 1. 
It should be noted that the values of each 
of these may or may not be the same, 
which mainly depends on the position of 
the positive or negative outputs of the PV 
strings.

From Fig. 1 it is clear that xp* may be 
any of the points x1, x2, … x2n, or may 
lie in the intervals [x1, x2], [x2, x3], … 
[x2n-1, x2n], so the solution has (4n–1) 
possibilities in total. Consider xp* to be in the 
interval [xi, xi+1]; by removing the absolute 
values, Equation 4 may also be written as

(6)

 

Therefore,  L (x p)  in any segment 
[xi, xi+1] is given by Equation 6, where xp ∈ 

[xi, xi+1], for i = 1, 2, … 2n–1. It is evident 
that Equation 6 is a piecewise function 
over the entire segment [x1, x2n]. 

Similarly, L(yp) in any interval [yi, yi+1] 
can be written as

  
 (7)

where yp ∈ [yi, yi+1], for i = 1, 2, … 2n–1. 
It is also easy to see that Equation 7 is a 
piecewise linear function over the entire 
interval [y1, y2n].

As can be seen from Equation 6, L(xp) 
is a linear function of xp: when i > n, the 
slope of the piecewise function is positive 
in any interval, whereas when i < n, the 
slope is negative. When (2i – 2n) is equal 
to zero, the slope of the piecewise function 
is zero. According to the properties of 
a monotonic function, over the entire 
interval [x1, x2n] the value of Min L(xp) is 
equal to L(xp)|i=n, i.e.

 (8)

so the resulting optimal solution xp* lies 
in the interval [xn, xn+1].

Similarly, the optimal solution of Min 

L(yp) is [yn, yn+1]. Hence, the optimal 
solution of Min L(xp, yp) is

  (9)

“The optimal solution xp* 
lies in the interval [xn, xn+1].” 

Equation 9 is a fundamental solution 
of the functions in Equations 6 and 7. In 
particular, the values of xn and xn+1 may or 
may not be the same (the same applies to 
yn and yn+1), depending on the numbers 
and positions of the PV strings, so the 
global optimal solution of the combiner 
location problem can be divided into the 
following four cases:

Case A:  [xn, yn] or [xn+1, yn+1],
where xn = xn+1, yn = yn+1

Case B:  {(xp, yp)| xp = xn, yp = [yn, yn+1]},
where xn = xn+1, yn ≠ yn+1

Case C:  {(xp, yp)| xp = [xn, xn+1], yp = yn},
where xn ≠ xn+1, yn = yn+1

Case D:  {(xp, yp)| xp = [xn, xn+1], yp = [yn, yn+1]},
where xn ≠ xn+1, yn ≠ yn+1

Figure 1. 2n points ordered by x on a line.

Figure 2. Case B: Optimal location of the combiner for an odd number of PV strings.
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As seen above, case A represents a single 
point, and cases B and C denote a union 
of a whole segment. Case D, on the other 
hand, denotes a rectangular region, which 
means that more than one point may exist 
for the solution.

Verification of the optimal 
solution
The proof that [xn, xn+1] is the optimal 
solution of Min L(xp) will be established 
by contraposition. Suppose the optimal 
solution lies in the interval [xm, xm+1], for i 
= m and where m < n or m > n, so that xm 
≥ xn or xm ≤ xn. Thus, L(xp)|i=n – L(xp)|i=m 
> 0, where L(xp)|i=m = (2m – 2n) * xp + 
[(xm+1 + … + x2n) – (x1 + … + xm)].

Proof 

(10)

 

where xp ∈ [xm, xm+1].

•	 When n < m, L(xp)|i=n – L(xp)|i=m <0, so 
L(xp)|i=n < L(xp)|i=m (11)

•	 When n > m, L(xp)| i=n  – L(xp)| i=m 
= 2[(n – m) xp – (xm+1 + … + xn)] (12)

Since xp ∈ [xm, xm+1], this means xm ≤ 
xp ≤ xm+1 ≤ xm+2 … ≤ xn. From Equations 
11 and 12, L(xp)|i=n – L(xp)|i=m ≤ 0, which 
is a contradiction. Thus, when i = n, it 
is proved that [xn, xn+1] is the optimal 
solution of Min L(xp). Similarly, it can be 
proved that when i = n, then [yn, yn+1] is the 
optimal solution of Min L(yp).

Analysis of actual cases
From a practical point of view, the number 
of PV strings may be odd or even, or their 
arrangement may be irregular. Given the 
values of the located points in a PV array, 
it is a simple task to obtain the optimal 
location for the combiner on the basis of 
the conclusion of the previous section. 
Two examples corresponding to the cases 
A and B discussed earlier will be analyzed.

Example 1: case A
Consider nine strings in a PV array and 
eighteen given points whose locations are 
as shown in Fig. 2. The numerical values 
of the coordinates are shown in Table 1. 
The origin of the coordinate system is 
the left corner of string number one. The 
coordinate value of the output of each 
string, in order along the x and y axes, is 
shown in Table 2.

According to the values provided in 
Tables 1 and 2, the resulting optimal 
solution of the combiner location problem 
is the point where xp* ∈ [x9, x10] and yp* ∈ 
[y9, y10]. However, x9 = x10 and y9 = y10, so it 
follows that the optimal solution is just the 
point [20.5, 14.789], as shown by the red 
dot in Fig. 2.

Example 2: case B
Now consider ten strings in a PV array and 
twenty given points whose locations are as 
shown in Fig. 3. The numerical values of the 
coordinates are presented in Tables 3 and 4.

The optimal location of the combiner 
is the point satisfying xp* ∈ [x10, x11] and 
yp* ∈ [y10, y11], where x10 = x11 and y10 
≠ y11. The optimal solution is therefore a 
segment defined by xp* = 20.5 and yp* 
∈ [14.789, 17.389]: this is the segment 
between the negative outputs of the third 
and fourth strings of the PV array, as 
shown by the red line in Fig. 3.

“The solution of the location 
problem can be quickly 
determined manually.”

Conclusion
This paper has described a technique for 
determining the optimum location of 
the combiner by using a mathematical 
optimization function based on the 
Manhatt an metr ic  a lgor ithm.  The 
objectives of the optimization problem 
were to minimize both the investment in 
overall material cost and the system voltage 
losses in the cables. It was shown that the 
Manhattan-based optimal solution of the 
combiner location problem can be drawn 
from a finite set of candidate points (positive 
or negative outputs of PV strings), all of 
which are easy to determine. The technique 
was illustrated by means of two examples.

From a practical point of view, although 
the solution of the location problem 
presented in this paper cannot be obtained 
using computer software, it can be quickly 
determined manually. Moreover, the 
optimization model can be implemented for 
any size of PV array. However, if the resulting 
optimal location for the installation of the 
combiner is not feasible, the next best option 
is to choose the most practical placement 
closest to the optimal position. 

String number  

 X+ [m] Y+ [m] X- [m] Y- [m]

1 0.492 0.808 19.992 0.808

2 0.492 3.408 19.992 3.408

3 0.492 14.789 19.992 14.789

4 0.492 17.389 19.992 17.389

5 20.5 9.589 40.492 9.589

6 20.5 12.189 40.492 12.189

7 20.5 19.989 40.492 19.989

8 20.5 22.589 40.492 22.589

9 20.5 25.189 40.492 25.189

Table 1. Case A: Coordinate value of the output of each string.

Number xi [m] yi [m] Number xi [m] yi [m]

1 0.492 0.808 10 20.5 14.789

2 0.492 0.808 11 20.5 17.389

3 0.492 3.408 12 20.5 17.389

4 0.492 3.408 13 20.5 19.989

5 19.992 9.589 14 40.492 19.989

6 19.992 9.589 15 40.492 22.589

7 19.992 12.189 16 40.492 22.589

8 19.992 12.189 17 40.492 25.189

9 20.5 14.789 18 40.492 25.189

Table 2. Case A: Coordinate value of the output of each string, in order along the x 
and y axes.

Coordinate of positive  
output of string

Coordinate of negative 
output of string
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Figure 3. Optimal location of the combiner for an even number of PV strings.

Number            xi [m] yi [m] Number xi [m] yi [m]

1 0.492 0.808 11 20.5 17.389

2 0.492 0.808 12 20.5 17.389

3 0.492 3.408 13 20.5 19.989

4 0.492 3.408 14 20.5 19.989

5 19.992 9.589 15 40.492 22.589

6 19.992 9.589 16 40.492 22.589

7 19.992 12.189 17 40.492 25.189

8 19.992 12.189 18 40.492 25.189

9 20.5 14.789 19 40.492 27.789

10 20.5 14.789 20 40.492 27.789

Table 4. Case B: Coordinate value of the output of each string, in order along the x 
and y axes.

String number 

 X+ [m] Y+ [m] X- [m] Y- [m]

1 0.492 0.808 19.992 0.808

2 0.492 3.408 19.992 3.408

3 0.492 14.789 19.992 14.789

4 0.492 17.389 19.992 17.389

5 20.5 9.589 40.492 9.589

6 20.5 12.189 40.492 12.189

7 20.5 19.989 40.492 19.989

8 20.5 22.589 40.492 22.589

9 20.5 25.189 40.492 25.189

10 20.5 22.789 40.492 22.789

Table 3. Case B: Coordinate value of the output of each string.

Coordinate of positive  
output of string

Coordinate of negative 
output of string




