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Forecasting and monitoring technolo-
gies for PV are required on different 
spatial and temporal scales by multiple 

actors, from the owners of PV systems 
to transmission system operators. Power 
system operations require a real-time view 
of PV production for managing power 
reserves and networks. They also require 
forecasts on all timescales from the short 
(for dispatching purposes), where statistical 
models work best, to the very long (for infra-
structure planning), where physics-based 
models are more accurate. For PV system 
operators, accurate forecasting is also critical 
to maximising the commercial value of the 
electricity they produce.

In its review of the challenges and oppor-
tunities associated with massive deploy-
ment of solar PV generation [1], the Grid 
Integration working group of the European 
PV Technology Platform (now ETIP PV) 
identified forecasting and observability as 
critical technologies for the planning and 
operations of the power system with large 
PV penetration. In this article we spell out in 
more detail what features are needed from 
these technologies and, after an assessment 
of their current status, how they need to be 
developed.

Some very good reviews of forecasting 
techniques have been published in recent 
years [2,3]. We have built on these by taking 
a step back and analysing the different 
use cases for forecasting in relation to PV. 
To estimate the economic value of further 
improvements in forecasting, we linked the 
effect of forecasting errors with the current 
imbalance settlement prices charged by 
balancing authorities in Europe.

Power system dynamics
At all times in all power systems, consump-
tion (including charging of storage systems, 
and losses) and production (including 

discharging of storage systems) need 
to be equal. In a conventional power 
system operating in alternating current 
(AC), frequency is a real-time indicator 
of that balance. To ensure that balance is 
maintained any fluctuation of production 

or consumption needs to be anticipated as 
much as possible before it translates into 
frequency deviations.

Indeed, any corrective action will be 
limited by the speed at which power system 
components can move to new set points. 
The characteristic time constants of power-
system components range from less than a 
second to 10 years or more, as summarised 
in Table 1.

Prior to the introduction of variable 
renewable sources such as wind and PV, 
power consumption was the only variable 
component in the power system balance. 
The ability to forecast its variations was 
introduced in the 1940s. It has since been 
refined to take into account “seasonal” 
variations (day of the year, day of the week, 
hour of the day) and the specific character-
istics of different electricity uses (heating 
and cooling, cooking, industrial equipment, 
lighting, etc.) [7]. However, the focus has 
always remained on regional or national 
aggregates.

The deployment of variable renewable 
generation is introducing new require-
ments on forecasting techniques. First of 
all PV and wind generators are much more 
sensitive to weather conditions. The main 
weather parameter with an influence on 
electricity demand – where heating or 
cooling is powered with electricity – is 
temperature. This parameter varies slowly in 
time and space. PV and wind on the other 
hand strongly depend on rapidly chang-
ing variables. As a result, the geographic 
distribution of the generators matter more 
for the aggregate variations than that of 
the loads. 

In addition, PV generation is highly 
distributed in terms of locations and 
ownership. It is therefore often necessary 
to forecast generation with a higher spatial 
resolution than demand. Indeed single 
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Table 1: Characteristic time constant of power system components

< 10 s	 Inertia response 

	 Protection system operations 

	 Switching of power electronics 

	 Battery switching between charge and discharge

1 min	 Fast start of pumped hydropower plant [4] 

	 Fast start of some combustion engines [5]

15 min	 Gas power plant from 1/3 to full power [6]

1 h	 Start-up and shutdown of most power plants

24 h	 Commitment of generation units

1 year	 Maintenance planning

10 years	 Expanding transmission infrastructure

20+ years	 Economic lifetime of PV systems 

	 Economic lifetime of grid assets

For PV to play its 
full part in the 
grid of tomor-
row, further work 
is needed to 
improve forecast-
ing techniques
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MW-scale plants may be exposed to market 
trades, and microgrid operations with self-
consumed PV electricity require forecasts at 
the building or district levels. Such granular-
ity increases the forecasting difficulty: the 
standard deviation of PV power production 
is reduced as 1/√S and 1/√N, where S is the 
surface area of a PV power plant and N is the 
number of aggregated plants [9,10].

Drivers for PV forecasting
An important concept when dealing with 
forecasting in the power system is the 
balance group. Balance groups can include 
generation units, consumption units, or be 
‘virtual’ when operated by financial actors 
who only trade. Forming a balance group 
is a requirement to participate in wholesale 
electricity markets. All balance groups 
report to a balancing authority, which in 
Europe is generally the transmission system 
operator (TSO). This authority ensures 
that trades on the electricity market are 
balanced i.e., that contracted generation 
matches forecast consumption. Balanc-
ing group managers are responsible for 
ensuring that at each time-step of market 
operations their contracted production 
and/or consumption matches the realised 
values. In case of mismatch between 
prediction and realisation, balance group 
managers are penalised based on intraday 
market prices; if the imbalance is in the 
same direction as the whole system (e.g., a 
producer under-delivering when there is a 
shortage in production), the penalty will be 
above the intraday market price and if the 
imbalance is in the opposite direction the 
penalty will be below.

PV generators were until recently 
shielded from this balancing responsibil-
ity. In Germany for example, TSOs carry 
the responsibility and operate a balance 

group for PV systems which are connected 
under the Renewable Energy Sources 
Act (EEG) in their area [11]. Regulators 
are now pushing to increase exposure of 
PV generators to market conditions and 
increase their responsibility in the balancing 
mechanisms. A 2014 ruling by the Italian 
regulator introduced imbalance charges for 
renewable power generators of more than 
1MW in capacity; the mechanism is similar 
to that applied to conventional balance 

groups but the fees are modulated to take 
into account the inherent volatility of the 
different sources [12]. The resulting cost 
for PV generators is estimated around €5/
MWh, which is still significantly lower than 
imbalance prices applied to regular balance 
groups in Europe [13,14].

In addition, support mechanisms for 
large PV generators are evolving from 
feed-in tariffs to market premiums in France, 
Germany and the UK [15] under which these 

Figure 1: Working 
principle of 
market premi-
ums; adapted 
from [15]
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generators receive a regulated payment on 
top of market prices. As illustrated in Figure 
1, these premiums can be fixed, or float-
ing, i.e. cover the difference between the 
average market price over a certain period 
of time – generally one month – and a 
reference price set by the regulators. In both 
cases generators have a direct interest in 
maximising the value on the market of the 
electricity they produce and the volumes 
they can effectively sell. Since a generator 
can only commit on the market power it is 
confident it can produce, accurate forecasts 
are essential to maximising these sold 
volumes.

Finally, the development of micro-grids 
and of combined PV-plus-storage systems 
requires local energy management, which, 
for optimal operations, relies on predictive 
control. Single-system or neighbourhood-
level power forecasts on timescales from 
a few minutes to 24 hours are therefore 
necessary.

These drivers and the dynamics of 
power system components described 
earlier together create a range of use cases 
for forecasts on time horizons ranging 
from 15 minutes or less to decades, and 
on geographical scales ranging from the 
single site to an entire region or country. 
These use cases are summarised in Table 2, 
which shows in particular the central role of 
day-ahead forecasting. 

Forecasting approaches and 
performance
Performance criteria
Because the use cases are so diverse, 
there is no single metric to characterise an 
absolutely “good” forecast. Instead, any of 

the three most commonly used metrics, 
which are listed in Table 3, can be preferred 
depending on the target application. 
These metrics are generally reported in a 
normalised way; particular attention must 
be paid to the normalisation factor and to 
the integration period. It is good practice 
to integrate the error only over daytime 
hours, since PV production is sure to be zero 
in the night. And while errors in irradiance 
forecasts are generally normalised by the 
average measured irradiance, those on 
power forecasts are often normalised by 
the nominal peak power of the system. This 
difference mechanically results in reported 
errors which are about three times lower for 
power generation than for irradiance.

Current forecasting techniques
The first approach in PV power forecast-
ing relies first on the prediction of relevant 
weather parameters (at least temperature 
and irradiance), followed by a calculation 
of the corresponding power output. This 

Figure 2: Error 
obtained with 
state-of-the-art 
physical forecast-
ing methods for 
irradiance.

Metric Formula Application

Mean bias 
error

Investment decision

Mean 
absolute 
error

Balance group 
management

Root-mean-
square error

Optimisation of 
generation reserves

Table 3: Main performance metrics used to assess forecasting methods
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Table 2: Summary of use cases for PV power forecasting

Time 
horizon

Single site 
(10 m – 100 m)

PV plant owners
PV plant operators

MV distribution grid 
(1 km – 10 km)

DSOs
Microgrid operators

Transmission system 
(100 km – 1000 km)

TSOs
Market operators

15 min Management of storage system Management of active/reactive 
power

Activation of reserves

1 h Management of storage system
Intra-day trades

Storage and load management Intra-day trades

24 h Management of storage system
Compliance with regulations
Day-ahead trades

Storage and load planning Booking of reserves 
Transmission scheduling
Day-ahead trades

1 year O&M contract Planning of maintenance opera-
tions

Long-term trades

20+ years Investment case Infrastructure planning Infrastructure planning



approach can build on existing weather forecasting tools. The most appropriate 
tool to predict irradiance depends on the desired time horizon.

For resource assessment – i.e. to predict patterns of energy generation over 
the lifetime of the system – statistically representative time series of weather 
parameters are generated based on interpolation of ground-level measurements 
(weather stations) or satellite images to produce “typical meteorological years”.

For time horizons between six hours and three days, numerical weather 
prediction (NWP) is preferred. NWP data are generated by global or mesoscale 
simulation models which provide the numerical integration of the coupled 
differential equations describing the dynamics of the atmosphere and radiation 
transport mechanisms [16]. The initial conditions are given by satellite, radar, 
radiosonde and ground station measurements. NWP data are often corrected 
by post-processing algorithms called Model Output Statistics (MOS) which use 
historical ground measurements to partially remove systematic errors [17].

For time horizons between two hours and six hours, visible and/or infrared 
images are acquired by satellite-based sensors. A cloud index is computed 
based on reflectance measurements and is typically used to derive ground-level 
global and direct irradiances [18]. As compared to NWP, only a few relatively 
simple modelling assumptions have to be applied to derive the solar resource. 
Persistence of cloud speed and direction (as derived from the last two images) 
is generally assumed. The dynamic nature of clouds challenges cloud-motion 
vector approaches as cloud distribution can change substantially within the 
typical 30-minute interval between two images. It is indeed challenging to 
account for cloud convection, formation, dissipation and deformation. However, 
since large-scale cloud systems (such as those associated with a cold front) are 
more persistent, satellite-based forecasts typically perform more accurately 
than NWP-based forecasting models up to six hours ahead, mostly because 
of ingestion, data assimilation and latency of calculations required to “spin up” 
NWP-based forecasts.

For time horizons below 30 minutes, total sky imaging is the preferred method. 
It consists of four steps:
1.	 Acquisition of the sky image from a ground-based, wide-angle camera;
2.	 Analysis of the sky image to identify clouds;
3.	 Estimation of cloud motion vectors;
4.	 Prediction of future cloud cover and ground irradiance.

The maximum accuracy with this method is generally obtained between five 
and 20 minutes; with low and fast-moving clouds it can be reduced to three 
minutes and for high and slow-moving clouds it can be extended to 30 minutes. 
The state-of-the-art accuracy for all these physical forecasting methods is 
summarised in Figure 2.

 Models for computing PV power from irradiance and environmental param-
eters also carry their own uncertainty, which compounds the error on forecasted 
irradiance. In a review of major modelling tools, the hourly root-mean-square 
error (RMSE) on AC power output was found to be below 7% in all situations [19].

To avoid this amplification of errors and to deal with time horizons between 
30 minutes and two hours where there is no satisfactory physical forecasting 
technique for irradiance, stochastic learning techniques are used. These methods 
can be separated between:

Univariate methods i.e. methods where only time series of the target variable 
(here, PV power) are fed into the model. These include:
•	 Persistence: P(t+1)=P(t);
•	 	STL: seasonal decomposition of time series by Loess;
•	 	Holt-Winters seasonal method;
•	 	TSLM: linear model fit with time series components;
•	 	ARIMA: autoregressive integrated moving average;
•	 	BATS: exponential smoothing state-space model with Box-Cox transformation, 

ARMA errors, Trend and Seasonal components;
•	 	Nnetar: Feed-forward neural networks with a single hidden layer and lagged 

inputs for forecasting univariate time series.
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Multivariate methods i.e. methods where 
exogenous variables such as measure-
ments of ground irradiance, temperature 
or humidity levels are fed into the model 
in addition to the target variable. These 
include:
•	 MLR: Multi-Linear Regression Model;
•	 	SVM: Support Vector Machine;
•	 	ANN: Artificial Neural Network;
•	 	Regression Tree.

Value of forecasting
To estimate the value of forecasting, and of 
improvement in forecasting techniques, the 
best analogy is the operations of balance 
groups, since for them forecasting errors 
have a well-defined cost. Indeed, European 
TSOs currently charge a typical imbalance 
price of €20/MWh.

If a 1MWp plant in the North of Italy were 
a balance group on its own it would then be 
charged this price. The mean absolute error 
over four years for such a plant is 11.6% of 
nominal power with clear-sky persistence, 
and 7.1% with an advanced forecasting 
technique (numerical weather forecast plus 
support vector machine) [20]. Since only 
daytime is taken into account (12 average), 
these errors translate into an annual imbal-
ance of 0.50 MWh/kWp and 0.31 MWh/kWp, 
respectively. So the annual imbalance cost 
would be €10,000 and €6,200  respectively. 
As a comparison, with power purchase 
agreements at €80/MWh as are now 
contracted in Germany, annual income for 
this plant would be €80,000. So two conclu-
sions can be drawn:
•	 Forecasting errors can reduce the value 

of PV electricity by more than 12%
•	 Advanced forecasting techniques can 

generate a value of almost €4,000 per 
year for a 1MWp plant.

Conclusion
Accurate forecasting of PV power produc-
tion has many use cases in both current 
power system operations and foreseen 
evolutions towards a more PV-centric 
system. Many of these cases require 
day-ahead forecasting, which is also the 
time horizon among those considered 
for which forecast errors are the largest. 
Research and development efforts should 
therefore focus on this horizon.

Other promising developments for 
using forecasts in power system operations 
include the communication of confidence 
intervals in addition to forecast values [21], 
and regional clustering to improve the 
accuracy of estimates of current power 
production and of forecasts.
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AuthorsBoth physical and stochastic learning 
techniques are available to forecast PV 
power. Their choice mainly depends on the 
target time horizon and on the availability 
of sensors.

In a simple case, the lost value of PV 
electricity due to forecast errors can be 
estimated at more than 12% of annual 
revenues. Using advanced forecasting 
techniques can significantly reduce this 
loss and generate a value of almost €4,000 
per year for a 1MWp plant based on power 
system balancing only. In smaller, weaker 
power systems than those considered here 
this value would be even higher.
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