Printed PV: Nanosolar unveils 640MW utility-scale panel fab, high-efficiency CIGS cell production

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

After staying relatively quiet for much of the past year, thin-film PV manufacturer Nanosolar has come out with a full docket of announcements: the completion of its 640MW panel-assembly factory near Berlin celebrated during an event attended by the German Minister of the Environment and other dignitaries; the start of serial roll-to-roll production of its flexible copper-indium-gallium-(di)selenide cells in the company’s San Jose facility; $4.1 billion in panel purchases from customers–including some of the world’s largest utility companies; NREL-verified cell efficiencies up to 16.4%; and new technical details of both its printed CIGS cell technology and utility-scale panels.

The panel-making facility, located in Luckenwalde  (about 60 kilometers south of Berlin), can operate at a production rate of one panel every 10 seconds and is capable of reaching a peak capacity of 640MW when operated around the clock, according to Nanosolar. Called by TUV Rheinland inspectors “a factory unlike any we've ever seen,” the plant incorporates a fully automated, robotic line (pictured at left) integrated with a sophisticated in-line quality control measurement system to string and assemble the individually sorted and tested cells into panels. One innovative part of the production line is a high-throughput stack lamination technique developed with a “leading provider of lamination equipment.”

The German panel factory is supplied with flexible aluminum-foil cells produced at the venture-backed company’s fab in San Jose. Nanosolar, which prints its cells using a proprietary CIGS ink in a mostly nonvacuum, low-cost process sequence, says it began serial production on its R2R processing line earlier this year.

“Getting to the point of serial production with the unusual extent of innovation and leapfrog cost reduction involved in our technology and delivering a product that out of the gate meets and exceeds the high bar set by the industry's existing volume manufacturers on performance and reliability is an accomplishment due to the incredibly hard work and perseverance of our team,” says Nanosolar president/CEO Martin Roscheisen.

Although the facility is calibrated for rapid growth, current production is running at a subcapacity baseload rate of about 1MW per month, according to Nanosolar. Web widths run up to 1500mm on the cell line, while certain process steps can attain throughputs as high as 40m/min, he told PV Tech. A full roll of processed, unsingulated PV foil is equivalent to 100KW. 

The San Jose plant will be ramped in sync with the company's market-introduction plan, which it says focuses on achieving “product bankability” with commercial banks and delivering on the company's $4.1 billion in contractual customer commitments.

“With almost all large solar installations credit financed, broad-based product bankability is our key next commercial goal,” states the company CEO (pictured at left). “We have long prepared for this, including through the technology choices we have made, the strong balance sheet we have maintained, the quality of customers we have secured, and the local production we have built.”

The product coming off those automated assembly lines is Nanosolar’s first offering, the Utility Panel—what it calls the industry’s first solar electricity module specifically designed as well as electrically and mechanically optimized for utility-scale solar power systems.

Featuring an innovative design scheme, the company says the IEC 61646-certified panel effectively eliminates the “balance-of-system penalty” that medium-efficient thin panels from First Solar and others have conventionally carried relative to higher-efficiency, more-expensive crystalline-silicon panels.

The Utility Panel is the industry’s highest-current thin module, by up to a factor of six, according to Nanosolar, and is also the first PV module certified by TUV for a system voltage of 1500V–about 50% higher than the next highest certified device. The combination of enhanced current and voltage enables utility-scale panel array lengths and results in a host of substantial balance-of-system cost savings, the company says.

On the mechanical side, the panel package employs a dual-tempered glass/glass design housing the flex cells, which is distinctly stronger than that of conventional thin-film-on-glass modules, achieving about 70% greater mounting span, thus facilitating substantially lower mounting costs, the company says.

The full panels as well as their components and materials have been put through a wide range of rigorous indoor and outdoor reliability and performance testing, done internally and with third-party firms, in a variety of geographic and climate conditions, and are certified under various IEC, UL, and other standards, according to Nanosolar.

“We have a huge effort on testing and are in fact expanding this even further,” Roscheisen told PV Tech. “We believe the standard tests are limited in some ways.  We are interested in looking at combinations of stresses as well as various forms of dynamic behavior.”

On the cell side, the National Renewable Energy Laboratory has independently verified that the company’s metal-wrap-through back-contact, printed-CIGS-on-metal-foil devices produced on its Gen 3 line have reached active-area conversion efficiencies as high as 16.4% during tests conducted earlier this year. “Our lab and production teams have managed to make more progress on efficiency than we had planned on in any of our business plans,” says Roscheisen.

Noting that “we print CIGS onto inexpensive metal foil, something that some have been skeptical can work while others have been wondering whether it can deliver cells better than 6% efficient,” he explains that the latest efficiency numbers for the foil cells actually  “represent two world records in one: It's the most efficient printed solar cell of any kind (all semiconductor and device technologies) as well as the most efficient cell on a truly low-cost metal foil (with a material cost of only a cent or two per square foot and mil thickness).”

Going beyond the champion cell results, Roscheisen reveals that “in terms of our current baseline production process, our best production rolls now achieve higher than 11% median efficiency measured as equivalent to panel efficiency, with very tight cross- and down-web uniformity.”

NREL’s Miguel Contreras, the senior scientist who supervises the CIGS group at the national lab, told PV Tech that his team has supported Nanosolar “with official measurements, characterization, transferring the know-how we have in making 20% solar cells in the labs. We showed them what the [film] structures look like, what they should shoot for, to improve their own processes and materials—that was our strongest contribution to them.”

But he gives full credit to Nanosolar, saying “truly, it’s to their merit on most or all of the work that’s been done. We just helped a little bit in their success, and I’m proud and honored to be part of that effort.”

(More info on Nanosolar's cell technology and the design and innovation behind its Utility Scale panel can be found in white papers and elsewhere on the company's relaunched website. Also check out the Chip Shots blog for an exclusive unfiltered interview with Nanosolar chairman/CEO, Martin Roscheisen.)

PHOTOS BY WILHELM BREUER, COURTESY OF NANOSOLAR

10 November 2021
The solar tracker market continues to mature at breakneck speed, with designs and component selections becoming ever-more complex in the pursuit of better project economics. But a more simplistic design could deliver a triple benefit of lower Capex, EPC and Opex costs. This webinar will set out the ideal single axis tracker design for utility-scale solar farms. The design leapfrogs from decades of experience, with a comprehensive understanding and attention to the three cost structures of Capex, EPC and Opx. Sun and Steel Solar has prototyped a single axis tracker designed to deliver up to US$0.03/W in real savings compared to existing single axis trackers on the market. That’s US$30 million for every gigawatt deployed.
15 November 2021
The 10th edition of the famous Metallization and Interconnection Workshop, MIW2021, will take place in the Thor Central venue in Genk, Belgium, on Monday, November 15, and Tuesday, November 16, 2021 as a face-to-face meeting. We are longing for direct exchange of knowledge and ideas after a long time. Hopefully you can be part of it! But of course, the organizors will keep an eye on the evolution of the Covid pandemic. It will be assess carefully, whether the workshop can be held without major risks or excessive restrictions. We are looking forward to exciting talks, discussions and meetings and to welcoming you in Genk!
23 November 2021
The solar, storage and EV industries in the UK are going from strength to strength. There is no better place for the community to meet, share ideas and do business than Solar & Storage Live from 23-25 November at the NEC.There’s something for everyone; more than 150 exhibitors, a high-level conference, a start up and innovation zone, a poster zone, strategic partners to network with and much more. 
1 December 2021
Understand fully the technical and logistical supply chains that determine the production and performance of solar modules, including all related factors impacting quality, reliability & bankability. This event will be run online with streamed content, access to session recordings and chat/messaging tools for delegates to connect.
2 December 2021
Intersolar is the world’s leading exhibition & conference series for the solar industry. As part of this event series, Intersolar India in Mumbai is India’s most pioneering exhibition and conference for India’s solar industry. It takes place annually and has a focus on the areas of photovoltaics, PV production and solar thermal technologies. Since 2019, Intersolar India is held under the umbrella of The smarter E India – India’s innovation hub for the new energy world.
13 January 2022
Intersolar North America and Energy Storage North America “Come Together” for the first time in Long Beach, CA—connecting installers, developers, utilities, technology providers, policy makers, and key stakeholders from around the world to advance the clean energy future. With best-in-class conference programming, integrated exhibits and pavilions, and the live Solar Games installer competition, #isnaesna21 will showcase the industry trends, innovative solutions, and emerging talent transforming the solar, energy storage, and e-mobility markets. Register today to redeem our exclusive offer for PV Tech readers—free expo hall or 20% off full conference pass.

Read Next

October 22, 2021
Alight has signed agreements to build three solar parks in Sweden that according to the company will be the largest in Sweden once built with a total installed capacity of 90MW.
October 22, 2021
The clean energy business of US utility NextEra Energy had a record quarter of origination success in Q3, adding approximately 2,160MW to its backlog, including 515MW of new solar projects.
October 22, 2021
The US Department of Energy (DOE) is to fund projects aiming to extend the operational lifetime of solar PV projects to 50 years and support the development of advanced materials such as perovskites.
October 22, 2021
Essentia Energia has begun operations at its 475MW Sol do Sertao solar power plant in the Brazilian state of Bahia
PV Tech Premium
October 22, 2021
Average winning solar bids in Spain’s renewables auction this week came in above those for wind as interest among PV bidders faltered against a backdrop of rising equipment costs and regulatory uncertainty.
October 22, 2021
Norwegian energy giant Statkraft has released a report that urges greater action on decarbonisation to meet climate targets, puts renewables at the centre of any strategy and places huge importance on the role of green hydrogen.

Subscribe to Newsletter

Upcoming Events

Upcoming Webinars
November 10, 2021
8am (PST) | 5pm (CET)
Solar Media Events
December 1, 2021