The utility role in maintaining reliability as PV increases

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

As consumers, we take for granted the ability to access electricity at the flick of a switch. Grid reliability is presumed, and blackouts or brownouts result in customer dissatisfaction and bad publicity for utilities. Similarly, some utilities are subject to reliability mandates and tied to rates. This raises the stakes of the challenge to utilities, who consumers expect to continue to supply electricity reliably – even as power sources shift from conventional sources to a mix of conventional and distributed generation (DG) sources, and as consumption patterns change based on adoption of electric vehicles, energy storage and energy efficiency.

The challenge: distribution planning with different energy generation sources

The Solar Energy Industries Association recently reported that currently 645,000 US homes and businesses have installed solar power, with 195,000 of those installations occurring in 2014. Further increases in consumer demand for PV are expected as solar prices continue to decline and, more generally, increases in other DG energy sources are anticipated, driven by recent regulatory efforts to reduce CO2 emissions (Clean Air Act), and implementation of new state policies including distributed resource plans.

This poses a challenge: what must utilities do to sustain grid reliability as PV and other DG energy supplies increase?

Analysis and tools: the building blocks

Utility distribution planners are currently assessing how to adapt to the new scenario that they know is inevitable: a future in which there will be increased DG – including increased PV – and grid reliability needs to be maintained. The distribution planning process requires both considerations of the fine-scale spatial variations in the grid, with feeder-level characteristics key factors, as well as the temporal variations on diurnal and seasonal timescales.

The current analysis of the challenge suggests that the solutions are within reach: studies indicate that existing tools and existing data can be used to assess future scenarios. An upcoming study by Jeff Smith and Nadav Enbar of EPRI indicates both the complexity of maintaining grid reliability, and the potential for existing tools to be deployed to analyse the challenges and identify effective solutions. The study is a bottom up analysis at the feeder level, and assesses 12 attributes of any individual feeder to review the implications of adding varying amounts of PV to that feeder. Broadly, the 12 attributes considered are technical and economic metrics relating to the transformer capacity, feeder losses, energy consumption, feeder voltage and feeder protection.

As suggested by the number of feeder attributes analysed, the variability at the feeder level is significant since distribution systems are unique in their response to distributed energy resources, and the costs and benefits vary significantly. This is reflected in the report analysis of three different feeders: one of which can host PV anywhere on the feeder, one of which can host PV at some, but not all, locations on the feeder and one of which cannot host PV anywhere on the feeder. Therefore analysis must be conducted at the local feeder scale: there are not “representative feeders” that can be used broadly since location and other feeder attributes matter in determining how much PV can be added.

A notable result of the EPRI study is the determination that the local feeder level analyses can be aggregated to a substation or system level, incorporating results from thousands of feeders for distribution planning.

Utility organisational structures: new emerging needs

While there is some work to be done in gathering and maintaining the necessary distribution system data and in ensuring that the distribution planning models are accurate, the biggest challenges to utilities relate to how to integrate software and IT systems to enable accurate distributed energy resource planning, and how to ensure that utility staffing and internal organisation are aligned with the future needs.

In another upcoming study, Daisy Chung of the Solar Electric Power Assication (SEPA) and Andy Coleman of Black and Veatch, have analysed different utilities’ approaches to distribution planning to assess the extent to which utilities’ existing processes and structures are aligned with future needs. Interviews with utilities indicated that many have a siloed structure that reflects past needs, with some degree of coordination to address emerging distributed energy resource planning needs. The pressure of meeting day-by-day – even minute-by-minute – operational needs and also comply with regulations can make it difficult for utilities to find the bandwidth to develop medium or long-term planning processes.

Developing good distributed energy resource forecasting tools relies on integrating distribution infrastructure data, distribution modelling software, interval metering data, and real-time management systems, but these have traditionally been supported separately. The conventional approach to interconnection involves consideration of applications received using general principles that in some cases may be simple rules of thumb. As DG increases, some utilities are proactively seeking interconnection in specific areas and are expediting certain applications accordingly. This approach relies on running a distribution grid model, which allows the utilities to plan with precision.

Such process changes mean that the responsibilities of distribution engineers become more complex, and utilities are not necessarily currently staffed to meet these needs. Therefore utilities may need to consider not only their processes and the structures that support them, but also the expertise of the relevant utility staff.

Connecting the dots

The momentum for change in the way the grid operates is considerable – for example, the package of twelve bills passed by the California Senate last week includes legislation to make California’s energy generation use 50% renewables by 2030. Such policy drivers will force utilities to plan for a different future with a substantially larger source of DG in addition to changes in energy consumption.

The future of utility distribution planning involves models that work at the local feeder level and aggregate the results to the system level, allowing data to inform a substantially more precise decision-making process. As is so often the case, the analyses and tools that enable a new approach to distribution planning and maintenance of grid reliability in this future scenario are at our fingertips, and the speed of the transition to that new approach is primarily governed by how rapidly our human-based systems and organisations adapt.

Utilities must adapt to the growing amount of distributed solar and other renewables coming on to the grid. Image: SDG&E.
The DNV GL survey of 200 energy leaders (2014) identified interconnection of DG as the most significant challenge facing the utility industry in the next five years. Source: http://www.dnvgl.com
25 May 2022
Transforming the Canadian energy market. Solar & Storage Canada will focus on fostering and expanding the solar and energy storage market in Canada. Co-located with f-cell Canada.
9 June 2022
The proliferation of solar PV and other renewables is a cornerstone of the emerging new power system and, as a result, the solar industry has entered its fastest-growth period. This has become typified by surging demand for high-power PV modules that both produce more power and are more efficient than their predecessors. Providing a significant boost to power outputs, large-format modules have become a popular choice for customers the world over. Outdoor testing of modules is now providing empirical evidence of the benefits large-format modules produce, providing a crucial benchmark and invaluable data for customers to evaluate their module selection and procurement processes. In this PV Tech webinar, experts from TÜV Rheinland, CPVT and Trina Solar will discuss how to ensure science based and precision testing under field conditions, how empirical data is collected and analysed during TÜV Rheinland and CPVT’s outdoor testing, the empirical data behind a 670W module’s ultra-high power, and more.
14 June 2022
Join us in Napa to unlock the key to reliable PV module supply to the U.S. market in 2022 & 2023. We'll also be gathering the main players in the US solar market for some wine tasting!
15 June 2022
Consumers are turning to residential renewables in significant numbers, driven by a desire to be environmentally conscious and a wave of high power prices. But turning green requires easy-to-use and, above all, safe technologies that meet expectations. Huawei is committed to building efficient, safe, reliable and grid-supporting smart PV plants that also provide smart services to consumers, and its Residential Solution has been tailored to meet consumer demand. This webinar will demonstrate the full suite of technologies offered within the Huawei Residential Solution, including a smart energy controller, smart AC charger, and AI-powered energy storage solution, and detail how it can place power back in the consumer’s hands.
19 July 2022
As New South Wales is gearing up to become a renewable energy superpower, an exciting clean energy event is coming to Sydney. Energy Next is a free-to-attend industry event focusing on the latest renewable energy and energy management technologies, which will be held from 19-20 July 2022 at the ICC Sydney in Darling Harbour. Organised by the same people behind the country’s largest clean energy event, All-Energy Australia, Energy Next will bring a quality exhibition and technical session series to NSW. Energy Next will also host the Clean Energy Council’s Solar Masterclass with a program developed for solar designers and installers. Across two days, Energy Next will provide an extensive exhibition, workshops and networking opportunities for those working in the renewable energy industry to meet with leading suppliers, discover the latest technologies and gain an understanding of how to successfully launch new clean energy projects.
23 August 2022
Intersolar South America, South America’s largest exhibition and conference for the solar industry, takes place at the Expo Center Norte in São Paulo, Brazil, on August 23–25, 2022, and has a focus on the areas of photovoltaics, PV production and solar thermal technologies. At the accompanying Intersolar South America Conference, renowned experts shed light on hot topics in the solar industry. In 2021 – despite the Covid-19 pandemic – Intersolar South America welcomed more than 28,000 visitors and over 1,000 conference attendees over 3 days. 200+ providers showcased their products. Combining local and international expertise, Intersolar South America brings together the PV and solar thermal sector to discuss the current status and strategic trends for Latin American PV markets, as well as technology innovations and new business opportunities. Overall, distributed generation is still driving momentum in the Brazilian market.

Read Next

May 20, 2022
Huawei and SolarEdge have agreed on a global patent licence agreement, ending lawsuits between the companies that were pending in Germany and China.
May 20, 2022
Solar module supplier Maxeon Solar Technologies has appointed Philippe Costemale as its new chief operating officer (COO).
May 20, 2022
Shipping costs will fall in the coming years, but will not fully normalise for at least another five years, PV Tech Insights heard this week.
May 20, 2022
Independent power producer (IPP) RES has announced a collaboration with power purchase agreement (PPA) provider Alight to develop new solar projects in central and south Sweden. 
PV Tech Premium
May 20, 2022
SMA Solar CEO Jürgen Reinert tells PV Tech Premium how the solar industry is benefiting from increased access to politicians as he calls for more support for European PV manufacturers.
May 20, 2022
US solar tracker manufacturer Nextracker has expanded its output with the addition of a new line in Arizona.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
June 14, 2022
Napa, USA
Solar Media Events
October 4, 2022
New York, USA