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Power generation from solar energy 
is becoming ever more attractive: in 
2018 the global installed photovolta-

ic capacity is expected to approach 500GW. 
Favourable financing conditions and falling 
costs have made PV into an attractive 
investment. In many regions of the world 
the production costs (levelised costs of 
electricity, LCOE) for utility-scale solar are 
now well below the LCOE of nuclear or 
coal-fired plants. The barrier of entry into 
the energy generation market has thereby 
become much lower today than it was 
only a few years ago, when the building 
of a conventional power plant involved 

huge investment costs and only a few 
participants dominated the market. Invest-
ment companies or family offices with an 
international focus are taking advantage 
of the new opportunities and have already 
assembled sizeable, globally diversified 
portfolios. These so-called independent 
power producers (IPP) – power producers 
without direct access to the grid network 
– are putting pressure on traditional, 
often regional or national utilities that, 
hampered by their portfolio of convention-
al power plant, can react much less flexibly. 
Utilities, for their part, are countering by 
investing in renewable energy for power 

generation, cutting their investment in 
conventional power plants or by splitting 
up. Whether IPP or utility, a global trend 
has become the steady growing photovol-
taic portfolios, with generation capacities 
of more than 500MW or even 1,000MW, 
becoming the rule. 

This growth in portfolio size is bringing 
with it an increasing demand for optimal 
management of the assets as a whole: 
minimising investment in operations and 
maintenance (O&M) whilst maximising the 
earnings/cash flow from energy produc-
tion at the same time. The achievement of 
these goals is increasingly being assisted 

O&M  |  The optimal and profitable operation of solar assets is become increasingly challenging 
as portfolio sizes increase. Stijn Stevens and Michael Matthes explore how device-level energy 
forecasting is helping prioritise O&M activities across dispersed fleets

How embedded micro-forecasting 
changes the decision making for 
portfolio maintenance

Embedded 
micro-forecasting 
supports the 
centralised 
operation of PV 
portfolios
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by data analysis, error identification 
and solution-oriented decision making 
using software solutions that are able to 
analyse the incoming data streams from 
the SCADA (supervisory control and data 
acquisition) systems in the individual 
plants and compare them with the overall 
portfolio performance. The human opera-
tor in the control room – the so-called 
Network Operations Center (NOC) – is 
turning into a “pilot” who has to “fly” 
the portfolio while managing a steadily 
increasing MWp volume at the same time. 

Given the limited availability of 
resources and sustained pressure on 
costs, the prioritisation of the necessary 
activities has become crucial. One aspect 
that can help in this context is embedded 
micro-forecasting. By this, we mean the use 
of energy production forecasts down to 
device level across a regionally diversified 
portfolio of photovoltaic plant having 
heterogeneous device types (in particular 
inverters). These forecasts are then used to 
prioritise maintenance so as to minimise 
expected energy losses. In the event of any 
malfunctions, service calls are optimised 
according to a cost/benefit analysis.

Forecasting at a plant level 
Meteorology has been the recipient of 
a wealth of innovation in recent years. 
The availability of powerful computer 
technology and high-resolution satellite 
data, combined with associated improve-
ments in weather models, now provide 
for significantly improved forecasting 
quality. In addition to global models such 
as the American Global Forecast System 
(GFS), having a mesh width between 
individual grid points of around 28km [1] 
or the German ICON model (Icosahedral, 
Non-hydrostatic) with a horizontal mesh 
width of approximately 13km [2], there is a 
multitude of localised area models offering 
a substantially finer-grained grid structure. 

For example, the COSMO-DE model 
provides a horizontal resolution down 
to 2.8km for Germany, Switzerland and 
Austria [3]. In general, it can be said that 
the quality of forecast increases with reduc-
ing mesh size; however at the same time, 
the reliable forecasting period decreases 
owing to the increased complexity. On one 
hand, global, coarse-meshed models such 

as GFS can provide a forecast up to 16 days 
in advance [1], whilst on the other, smaller 
mesh models such as the COSMO-DE are 
often limited to about 24 hours [4]. This 
discrepancy between the forecast period 
and quality has given rise to new business 
models: independent providers have been 
able to combine widely differing models 
using their own computer technology, 
sometimes enriching the results with 
locally measured values or correction 
factors, so as to be able to offer a refined 
forecast for a particular location for longer 
time periods. 

The data channels shown in Figure 1 are 
particularly interesting for PV plants.

The irradiation forecast is based on satel-
lite imagery, through which the irradiation 
data can be optimised using clear-sky 
algorithms and statistical models. As a rule 
of thumb, the lower the cloud cover at 
any particular site over the year, the more 
accurate will be the irradiation forecast. 
At the same time, short-term forecasts of 

Forecast-Data Channel Forecastability Application

Global Horizontal Irradiation GHI (W/m²) Challenging Power forecast

Diffuse Horizontal Irradiance
DIF (W/m²)

Challenging Power forecast: Estimation of Plane of Array 
irradiation (POA)

Direct Normal Irradiance DNI (W/m²) Challenging Power forecast: Estimation of Plane of Array 
irradiation (POA)

Ambient temperature (°C) Good Power forecast: Dissipation of module 
temperature

Wind speed (m/s) Good Power forecast: Dissipation of module 
temperature; 
Tracker-based plants

Wind direction (°) Good Tracker-based plants

Figure 1. Forecast data for PV applications

Notes: 1) According to IEC 60751; 2) IEC 61724-1:2017, Class A – high accuracy
Table 1: Characteristics of widely used sensor types in PV plants

Pyranometer 
Secondary standard (ISO 
9060:1990) 

Temperature Sensor

Used to measure Radiation [W/m²] Temperature
(module & ambient air 
temperature)

Typical measurement range 100W/m² to 1,500W/m² -40°C to +80°C

Accuracy Uncertainty ≤ 3% Uncertainty ≤ 2°C (module level),
Uncertainty ≤ 1°C (ambient air 
level)

Commonly used are1:
Class A ± 0.15° + 0.002 [t] or 
Class B ± 0.3° + 0.005 [t]

Maximum sampling-interval2 3 seconds 3 seconds

Maximum recording interval2 1 minute 1 minute

Digital Weather Station

Relative 
Humidity

Air pressure Wind speed Wind 
direction

Precipitation 
quantity

Typical measurement 
range

0% to 100% 400 to 
1,100hPa

0 to 70m/s 0° to 360° -

Accuracy ± 3% ± 0.5hPa ≤ 0.5m/s (wind 
speed ≤ 0.5m/s)
≤ 10 % (wind 
speed > 5m/s)

± 5° ± 5% to ± 10%

Maximum sampling-
interval2

1 minute not specified 3 s, 
suggestion: track 
maximum values 
to determine gusts

3 s 1 minute

Maximum recording 
interval2

1 minute 1 minute 1 minute 1 minute 1 minute
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Visit booth B2.420 at Intersolar Europe to get the latest information on this innovation.

the GHI (intra-day forecasts), derived from 
satellite images of cloud tracks, allow much 
higher hourly accuracy [5].

The availability of local weather 
measurement data is fundamental when 
deriving key performance indicators 
(KPI) for assessing the performance of a 
PV system. Without this data, especially 
irradiation and temperature, the energy 
production of a PV power plant cannot be 

assessed. Innovations and cost reduction 
by the producers of meteorological sensors 
has led to the situation where today almost 
every plant with >1MWp rated output is 
equipped with its own measuring technol-
ogy. The recommended sensor scope and 
sampling rates are specified in IEC 61724-
1:2017 “Photovoltaic System Performance 
- Part 1: Monitoring”. Pyranometers are 
widely used for measuring global irradi-
ance and temperature sensors are usually 
in place for recording the module tempera-
ture. Digital weather stations provide 
measurements of data such as air pressure, 
ambient temperature, humidity, precipita-
tion, type of precipitation (rain, snow), 
wind speed and direction. As a result, every 
large PV system usually has extensive, site-
related weather data available across the 
whole of the system’s life.

Forecast providers often offer predic-
tions for energy yield based on an 
irradiation prediction combined with 
a simple system model: tilted surfaces, 
system capacity and an assumption about 
performance ratio. This is inadequate for 
maintenance scheduling, especially in 
areas with volatile weather conditions. 

The first key element in obtaining a 

reliable basis for O&M decisions is to 
combine these forecasts with data from 
local weather sensors. This increases 
the accuracy of the plant forecast and, 
indirectly, allows the local geographic 
physiology to be learned over time. The 
second element is to get the component 
models to match the reality. Both objec-
tives are obtainable by moving to machine 
learning of a different kind.

To increase forecasting accuracy a neural 
network approach is suitable, although not 
always needed. Picking the correct number 
of nodes, both for the inputs as well as for 
the hidden layers, is far from trivial and if 
not done well can lead to neural network 
models that are computationally very 
expensive. Here, it is essential to tailor the 
model to the plant. If this is setup correctly, 
the neural network will be able to learn the 
geographical characteristics of the plant 
and its evolution over time, based on the 
constant plant feedback.

The irradiation forecast is then used to 
predict the plant’s energy yield by using 
a plant model consisting of a series of 
component/loss models: surfaces, soiling, 
shading, modules, DC cabling, inverter, 
AC cabling and a transformer model. The 

Figure 2: Neural network to tailor the model
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parameters of some of these models are 
fixed, such as the surface model which 
incorporates the module orientation 
and occasionally tracking. Other models 
require data from datasheets or other 
parameters that are estimated from the 
plant’s historically measured data. Simple 
quality factors or machine learning 
can be applied in both cases, either to 
determine or to verify and correct these 
parameters, so that a best fit can be 
obtained between measured data and 
models.

As an example, a generic Sandia invert-
er model [7] can be inversely modelled 
inversely, so that the parameters of the 
model (the manufacturer datasheets) 
become the variables of the equation. By 
using the actual inverter and measure-
ment data, a best fit for these variables 
is looked for. Using linearisation and 
assuming that the parameter variables 
have a Gaussian distribution, a Kalman 
filter structure can deliver a best guess for 
the parameters. The power generation 
predictions will become more accurate 

against the fitted data and, in addition, this 
allows unexpected changes in parameters 
to be used for predictive maintenance.

Micro-forecasting at a device level
A significantly improved picture about the 
expected yield can be gained by compiling 
a forecast at an inverter level. In this, the 
expected yield in the future is based on the 
forecast weather data for each individual 
inverter across the entire portfolio. Individ-
ual correction factors for the weather 
data can be included separately for each 
inverter in the calculation.

If the monetary worth of the individual 
kWh output is included to enrich this data, 
one can quickly put together a prediction 
of the total revenue for each individual 
inverter. The illustration in Table 2 shows 
an example of a financial ranking for three 
PV systems which use central inverters but 
have different remuneration schemes. The 
ranking is based on an energy forecast at 
device level.

This type of micro-forecast at device 
level is especially well suited to decision 

Table 2. Example of an energy yield prediction at inverter level

Figure 3. Irradiation forecast improvement through neural network (NN) model

making for large portfolios incorporat-
ing many plants, including perhaps with 
extremely large numbers of inverters. 
Especially when combined with a Comput-
erised Maintenance Management System 
(CMMS), the information provided, includ-
ing estimates of the financial impact of 
faults across several inverters, can be used 
to prioritise repair work. Sensible decisions 
can then be made about when to send 
technicians to which sites, so that the 
repair can work be optimised from a cost-
benefit perspective. If internal resources 
are overstretched, it can make a clear case 
for calling in external technicians – or 
not. In this way, micro-forecasting allows 
transparent decision making: whether 
such a strategy would pay off economi-
cally or whether repairs should be delayed 
because the expected yield would not 
justify the higher cost. For plants that use 
string inverters, where an outage of an 
individual inverter might not have a huge 
financial impact, it allows the develop-
ment of a sensible agglomeration strategy.

In the other direction, long-term 
planned maintenance intervals for invert-
ers can also be included in the forecast. 
Here, the maintenance planning in a 
CMMS would be directly linked with the 
production of the yield forecast for the 
power plant. If maintenance is planned, 
the generation capacity available is 
suitably reduced and the yield forecast at 
a power plant level adjusted to match. In 
this way a refined overall plant forecast 
can be assembled, which includes factors 
that are independent of the weather.

Conclusion
Forecasting will continue to gain in 
importance in the future. Large, central-
ised power generation plants burning 
fossil fuels will increasingly be replaced by 
decentralised plants based on renewable 
energies. This will place high demands on 
availability planning if a stable and reliable 
grid is to be guaranteed into the future. It 
will also increase the attraction of battery 
storage systems or other innovative 
conversion technologies such as power 
to gas, which allow surplus power to be 
converted and stored during periods of 
high yield and retrieved during periods 
of low yield. Managing this increased 
complexity in the electricity market will 
require reliable estimation of energy 
production, which, in turn, will require 
high accuracy production forecasts.  

The incorporation of plant-related 
weather forecasts is therefore a significant 
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way of improving the plant-by-plant yield 
forecasts of an operational fleet. As a 
further step, forecasts can be compared 
with historic data under similar weather 
conditions, making use of pattern recogni-
tion algorithms. Such innovations have 
the potential to reduce the uncertainty 
and increase the quality of the local 
irradiance forecast by several factors, 
thereby optimising the yield forecasts for 
individual plants. In this process, the differ-
ing quality of the recorded data, which is 
subject to factors such as contamination, 
shading and the state of sensor calibra-
tion, will have to be taken into account 
in order to minimise negative influences. 
This can only succeed if the data is viewed 
holistically and data from the SCADA 
system can be amalgamated with informa-
tion from the CMMS.

For operators of large portfolios, the 
integrative use of SCADA and CMMS will 
not only improve the yield forecast at 
plant level, but also offer a great opportu-
nity to optimize cross-portfolio mainte-
nance work from a cost/benefit perspec-
tive, for example at inverter level. The 
developments in this area are still young; 
the potential is very promising.
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