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The weather system is chaotic 
and cannot be controlled at will. 
Neither can solar power, which 

can only be anticipated with some level 
of uncertainty. In general, solar power 
increases the need for operating power 
reserves to compensate for produc-
tion drops due to weather fluctuations. 
However, improved scheduling using 
solar power forecasting allows minimis-
ing such reserves as well as reducing 
the need for PV power curtailment. 
For electricity trading, it maximises 
revenues by minimising the penal-
ties due to mismatches in production 
bids. All in all, solar power forecasting 

facilitates the matching of production 
and demand curves in distribution and 
transmission grids. 

The benefit of solar power forecasting 
extends over applications at multiple 
time ranges. For instance, at sub-hourly 
time scales, forecasting of power ramp 
rates is used to make a more efficient 
operation of power storage units. A 
few hours ahead, solar forecasting is 
helpful in the operation of second-
ary electricity markets, in which solar 
power forecasting is combined with 
other system variables such as foreseen 
demand, state of transmission grid or 
expected generation from other sources 

in order to come up with the best 
operating decisions. For day-ahead time 
periods, solar power forecasting is used 
to schedule the operation of conven-
tional power plants to accommodate 
the foreseen solar power generation. 
At even longer timescales, solar power 
forecasting is useful to schedule plant 
maintenance operations.

PV power forecasting
Forecasting PV power production 
involves two modelling aspects: 1) 
modelling the weather, and 2) model-
ling the PV system. Among the weather 
factors determining PV production, 
solar radiation is the most important 
one, followed by air temperature.

The level of detail and accuracy 
at which a PV power system can be 
described are much higher than for 
describing the weather system. For 
instance, the layout and technology of 
PV panels, thermal and electrical losses 
or inverter performance are all aspects 
that can be accurately characterised. In 
contrast, the observation of weather is 
comparatively highly uncertain. Given 
the large scale of the Earth’s weather 
system, its observation requires the use 
of remote measurement techniques 
(e.g., sensors onboard satellites). Indeed, 
most often there are no other means of 
observation. 

All in all, the characterisation of 
weather is at least as blurry as even 
the loosest characterisation of a PV 
system. As a practical example, just 
consider that the uncertainty of solar 
radiation measurements—starting at 
3% in the best use case—is one order of 
magnitude higher than the uncertainty 
of power measurements. At the same 
time, however, the uncertainty of solar 
radiation forecasts is nearly one order 
of magnitude higher than that of solar 
radiation measurements. Therefore, the 
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uncertainty at forecasting solar radiation 
turns out as the dominating factor in the 
forecast of PV power production. Based 
on this fact and the worldwide scarcity 
of public PV production data, the 
subsequent discussion will be primarily 
focused on solar radiation forecasting. 
However, the results here presented 
are similar to the ones expected for PV 
forecasting. The focus on solar radia-
tion forecasting allows us to expand 
our discussion to virtually any location 
worldwide.

Solar radiation forecast-
ing	
Solar radiation forecast can be tackled 
using purely statistical methods or physi-
cally based ones; or, the trend nowadays, 
using combinations of both. However, 
what ultimately defines the most 
suitable approach for each particular 
application is, most often, the intended 
forecast lead time, and factors such as 
computational burden or availability of 
on-site observations, possibly with near 
real-time feedback to the forecaster. 
Lead time, in our context, means the 
time between the forecast being issued 
and the time to which it refers. Likewise, 
horizon lead time is normally used to 
refer to the maximum lead time involved 
in each forecast. For example, for some 
applications, the interest in solar power 

forecast relies mostly on lead-time 
ranges of up to six hours ahead or, 
equivalently, six hours’ horizon lead time.

The various solar forecasting methods 
are here introduced by intended forecast 
lead time. In this sense, Figure 1 shows a 
conceptual comparison of the expected 
forecast skill as a function of forecast 
lead time for the most important families 
of forecast methods: i) Ground-based 
methods, ii) satellite-based methods 
and, iii) numerical weather prediction 
(NWP) models. The maximum forecast 
skill (one) is for a perfect forecast, i.e., 
matching the uncertainty of actual 
observations.

Less than one hour ahead
At sub-hourly forecast lead times, the 
methods based on on-site ground 
observations provide the highest skill 
(see Fig. 1) because, at this timescale, 
weather patterns often change very little 
and are affected only by local features. In 
other words, the correlation of weather 
phenomena stays high. Thus, statistical 
methods do a great job at casting the 
current observed conditions into near 
future times. The forecast is normally 
issued in the form of solar radiation 
time series representing the average 
conditions in the surroundings of the 
location of interest. These forecasts are 
most frequently based on the combina-

tion of solar radiation measurements 
with sub-hourly time resolution (ideally, 
10 minutes or shorter) and statistical 
methods such as auto-regressive or 
state-space models. A trivial model, 
particularly ubiquitous by its simplicity, 
is the so-called ‘smart persistence’, which 
assumes clouds do not change through-
out forecast lead time and only the 
changes due to the deterministic course 
of the sun are modelled. However, in 
general, more sophisticated assumptions 
are used in production models.

A somewhat different approach to 
forecasting sub-hourly solar radiation is 
based on the observation of the cloud 
field over the location of interest using 
on-site cloud sky cameras. These are 
essentially camera systems (as simple 
as plain surveillance cameras or more 
specialised and sophisticated systems) 
staring at the sky. By comparing two or 
more consecutive images, the overall 
speed and trajectory of cloud structures 
can be inferred and used to cast the 
cloud locations into the future (using 
similar techniques to the ones used by 
the satellite-based methods described 
below). Then, the spatially-distributed 
solar radiation over the measure-
ment field can be calculated from the 
predicted cloud field. This technique 
potentially offers a detailed description 
of the passing clouds over the PV field, 

Figure 1. Conceptual plot of forecast skill vis-á-vis forecast lead time for ground-, satellite- and NWP-based forecast methods. The forecast 
skill values, shown for illustration purposes, are only approximated. The pyranometer and sky camera photos are courtesy of the University of 
Jaén, Spain
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being even able to resolve cloud shades 
in different sections of a PV power plant. 

However, it is a relatively new 
approach, still under heavy research to 
solve multiple challenges that prevent 
its implantation as a widespread 
forecasting technique. It requires the 
on-plant deployment of dedicated 
hardware systems, with stringent 
maintenance requirements, and sophis-
ticated software to store, manage and 
process the large volume of data. There 
are also technological barriers that limit 
the ability of the systems to distinguish 
clouds near the circumsolar region or to 
detect the altitude of clouds. So far, the 
proposed solutions involve increasing 
the complexity and cost of the detec-
tion systems but still with too limited 
improvements. Typically, the forecast 
horizon using sky cameras does not 
extend beyond 15 minutes ahead.

Few hours ahead
As the forecast lead time moves from 
sub-hourly to various hours ahead, the 
relative importance of remote weather 
features prevails over local features. In 
essence, clouds far from the site of inter-
est will be affecting local weather in a 
matter of tens of minutes to a few hours. 
As a consequence, local observations are 
not enough to account for future events 
and the observation area needs to be 
expanded. The satellite-based methods 
then come naturally to the playing field. 
Figure 1 shows that the forecast skill 
of ground-based methods is eventu-
ally surpassed by the forecast skill of 
satellite-based methods for horizon 
forecasts of about half an hour.

Sensors aboard modern satellites 
provide images of cloud fields that 
extend over thousands of kilometres. 
They describe clouds with a spatial 
resolution in the order of 3 km (even 
finer for some spectral channels) and a 
refresh rate between 10 and 30 minutes 
depending on the satellite. As with 
sky cameras, the forecasting principle 
consists of a similarity analysis of two 
or more consecutive cloud images. 
From it, the positions of matching cloud 
structures in the two images are used 
to determine the speed and trajectory 
of clouds, which are represented by 
a spatial field of vectors customarily 
referred to as cloud motion vectors 
(CMV). Then, assuming CMV stay the 
same for the next hours, the future 
position of clouds is inferred, from 
which solar radiation is computed.

A major limitation of CMV-based 
techniques (using both sky cameras 
and satellite imagery) occurs when 
the vertical movement of clouds is not 
negligible with respect to the horizontal 
displacement, which typically happens 
with convective and orographic clouds. 
Contrarily to sky cameras, satellite-based 
forecasting does not require costly 
on-site equipment and maintenance. 
Moreover, the new and forthcoming 
satellite systems promise spatial and 
temporal resolutions never seen so far, 
being soon capable of reaching spatial 
resolutions comparable to large PV 
power plants.

Beyond few hours ahead
As shown in Fig. 1, the skill of satellite-
based forecasts decreases with increas-

ing forecast lead time. This happens 
because the spatio-temporal correlation 
of current and future weather patterns 
drops off. NWP-based forecasting 
methods tend to provide higher forecast 
skill than satellite-based methods 
beyond typically five or six hours ahead. 
They simulate the temporal evolution 
of the entire weather system by solving 
the equations that describe the atmos-
pheric physical processes. The physi-
cal foundations of NWP models make 
up for the lack of valid information at 
forecasting times from current observa-
tions. NWP models are routinely used 
by public and private weather services 
to provide forecasts on a regular basis. 
They can run over the entire Earth, then 
being known as global NWP models, 
or over only a limited area, then being 
referred to as limited area or mesoscale 
NWP models. Global models—which 
are run virtually only by public weather 
services and research centres due to 
their huge computational demands—
provide worldwide coverage at the 
expense of limited spatial resolution 
(currently in the approximated range 
from nine to 25km) and temporal 
resolution (currently hourly or three-
hourly). The typical refresh rate is once 
every six or 12 hours, with each new 
forecast normally providing values 
up to about 10 days ahead. However, 
some particular configurations of these 
models—not precisely focused on solar 
radiation—simulate the atmosphere up 
to several months ahead. 

Probably the most widely used 
global NWP models are the Integrated 
Forecasting System (IFS) of the 

Figure 2. Validation of solar radiation forecasts at a location in the Atacama Desert, Chile. (a) Root mean square error as a function of forecast lead 
hours for IFS (red), GFS (blue) and GEOS-5 (green). (b) Distribution of daily mean clearness index, KT. (c) Distribution of daily standard deviation of KT. 
Validation conducted against the Solargis solar radiation satellite model. Validation period: 2016/09 – 2017/04 (eight months)
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European Centre for Medium-range 
Weather Forecast (ECMWF) and the 
Global Forecast System (GFS) of the 
National Centers for Environmental 
Information (NCEI) of the United States. 
In contrast, mesoscale NWP models focus 
on a limited area (e.g., country-wide) 
and simulate the weather system with 
increased spatial and temporal resolu-
tions, in the order of few kilometres with 
sub-hourly outputs. Due to their reduced 
computational requirements compared 
to global models, they are often operated 
also by private entities since they can 
be adapted to the specific needs of final 
users.

The development of NWP models—
especially as regards global NWP 
models—has never been particularly 
focused on solar radiation, with only very 
few and recent exceptions. Therefore, to 
forecast solar radiation, post-processing 
approaches are often used to adapt the 
forecasts to local features not considered 
by the NWP model as well as to increase 
the temporal and spatial resolution. In 
addition, although all NWP models are 
physically based and are mostly founded 
on the same major physical assumptions, 
some other assumptions are different. 
For instance, the modelling of convec-
tive clouds or the calculation of solar 
radiation may originate discrepancies 
in the forecast skills of different models. 
Overall, the best forecasting approach is 
normally the use of consensus forecasts 
that optimally integrate forecasts from 
various NWP models. Below, some 
examples of NWP forecasts are shown.

Long-term forecasting
This sort of forecast is required during 

the early development stages of PV 
projects for feasibility and bankabil-
ity studies. Essentially, the foreseen 
resource for the next years and 
decades is required to trace down a 
reliable business plan. Interestingly, 
no forecasting models are used for this 
application. Instead, historical observa-
tions or typical meteorological year 
data sets are brought into the chess-
board under the major assumption 
that the future will behave as the past 
did. Sometimes, historical observations 
are slightly corrected to account for 
known error trends or expected climate 
drifts, when such drifts are deemed 
non-negligible.

Forecast post-processing
At all levels of forecast and with all 
forecast methods, the forecasts can be 
post-processed to diminish errors as 
long as reliable and accurate observa-
tions, not yet used in the forecast-
ing chain, are available. This post-
processing is particularly beneficial 
for satellite- and NWP-based forecasts 
since, unlike ground-based methods, 
they typically do not make use of such 
observations to create their forecasts. 
This data processing is customarily 
referred to as ‘model output statistics’ 
(MOS) and spans a wide spectrum of 
methods to combine observations 
and forecasts, from the simple and 
ubiquitous linear regression to the 
recent rise of a comprehensive family 
of skilful methods jointly referred to as 
machine learning. The improvement 
achieved by MOS post-processing 
highly depends on the quality of 
observations, the ability of the MOS 

model and the prevailing weather 
conditions. In addition, and particularly 
for NWP-based forecasts, the blending 
of forecasts from various independent 
NWP models results in enhancement of 
the forecast performance, as long as the 
forecast errors of the individual models 
are not fully correlated.

NWP forecast examples in various 
climate zones
In order to give a hint about current 
solar radiation forecast errors, the 
performance of three of the best-known 
global NWP models is assessed at three 
locations in different continents with 
varying cloud regimes. The models are 
IFS, GFS and the Global Earth Observ-
ing System Version 5 (GEOS-5) of the 
National Administration Space Agency 
(NASA) of the United States. The valida-
tion is conducted based on the root 
mean square error (RMSE) score using 
reference data from the Solargis solar 
radiation satellite model.

Figure 2 shows the evaluation at the 
Atacama Desert, in Chile. This location 
features a study case with prevailing 
pristine and cloudless conditions (see 
Fig. 2b; to be compared later to Figs. 3b 
and 4b) and thus with little cloud varia-
bility (see Fig. 2c; to be compared later 
to Figs. 3c and 4c). The cloud amount 
is represented by the clearness index 
parameter, KT, which roughly repre-
sents the cloud transmittance of solar 
radiation (KT is nearly zero for overcast 
conditions and one for cloudless skies). 
The validation of models is shown in Fig. 
2a for models with both no MOS (thin 
dashed lines) and MOS (thin solid lines) 
post-processing, respectively. Roughly, 

Figure 3. As Fig. 2, but for a location in Tokyo, Japan



ground-based methods for sub-hourly 
time horizons, ii) satellite-based 
methods up to about five hours ahead, 
and iii) NWP-based forecasts beyond 
that period. In general, however, the 
best results are obtained by intelli-
gently blending forecasts from different 
approaches and models. 

The normal trend is a growth of 
forecast errors with forecast lead time 
and cloud occurrence rate. In particular, 
it has been shown for three state-
of-the-art global NWP models that 
their forecast errors highly depend on 
the local cloud climatology, varying 
from about 10% RMSE for prevailing 
cloudless conditions to more than 30% 
RMSE for prevailing cloudy conditions. 
The three-days-ahead solar radiation 
forecast error may increase by nearly 
10% with respect to the intra-day 
forecast error under heavily cloudy 
conditions. When the forecast is issued 
for a PV fleet, the overall error may be 
broadly reduced by 15% under unstable 
weather conditions over land scales 
of about 50 to 100 kilometres. The 
enhanced capabilities of the satel-
lite and weather observation sensors 
to come during the next decades are 
expected to boost the quality of solar 
radiation forecasts at all timescales.
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all models have similar RMSE around 
10%. The MOS post-processing does 
not clearly and systematically improve 
the initial forecasts. The thick solid line 
refers to the combined MOS-corrected 
forecasts, which slightly improve the 
individual model forecasts.

Figure 3 shows the case of Tokyo, 
Japan. Now, the relative amount of 
cloudy days and variability (Figs. 3b and 
3c, respectively) increase with respect 
to the previous location. As a conse-
quence, the overall forecast error of all 
models increases up to 25% or higher. 
However, the benefits of the MOS 
post-processing and the combination 
of models are now clearer than for the 
cloudless case. Note also that, unlike for 
the Atacama Desert, the performance 
of the forecasts now decreases with 
forecast lead time, as a consequence of 
the smaller predictability of cloud-relat-
ed weather patterns.

Finally, Fig. 4 shows the case of 
Bratislava, Slovakia, where the relative 
cloud amount and variability (Figs. 4b 
and 4c, respectively) is even higher 
than in Tokyo. Now, the magnitude of 
forecast errors rises up to 30% or higher, 
with larger inter-model differences. 
Again, the MOS post-processing and 
models blending considerably improve 
the initial performance, by about 10% 
on average. The error increase with 
forecasts lead time is steeper than in 
Tokyo.

It may be concluded that the predict-
ability of solar radiation decreases 
with increased occurrence of clouds, 
although, in parallel, the room for MOS 
improvements increases. All in all, 
however, the MOS-corrected forecast 

RMSE varies from about 10% for prevail-
ing clear and cloudless conditions to 
more than 30% for locations dominated 
by cloudy skies where, in addition, the 
forecast error for three-day forecast 
horizons may increase by about 10%. 
The combination of models systemati-
cally provides better forecast than any 
individual forecast model.

Regional forecasting on PV fleets
Thus far, we have focused on point-
wise forecasts. However, aggregated 
forecasts across PV fleets are likewise 
required in many cases. In general, 
errors over the aggregated fleet under 
prevailing stable weather conditions are 
reduced only marginally, and, to a larger 
extent, for variable cloud conditions. 
The rationale is that weather variability 
produced by passing clouds results 
in highly uncorrelated solar radiation 
errors at the different locations of the 
PV fleet. This leads to cancellation of 
positive and negative errors when 
solar radiation is predicted over the 
entire fleet. Under stable conditions, in 
contrast, all errors are overall positive 
or negative, eventually preventing the 
cancellation of errors. With respect to 
pointwise forecasts, error reductions 
of up to 15% have been reported in 
the scientific literature for locations 
spread over region scales from 50 to 100 
kilometres.

Concluding remarks
Solar radiation forecast errors are 
the dominating factor in forecasting 
solar power. The most suitable solar 
forecasting technique mostly depends 
on the forecast lead period of interest: i) 

Figure 4. As Fig. 2, but for a location in Bratislava, Slovakia
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