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The EU-funded Solar Bankability 
Project together with the IEA PVPS 
Task 13 group have analysed current 

practices of PV cost and energy yield 
modelling and the corresponding risk 
assessment [1] [2]. Present-day models 
were analysed to identify gaps in how 
technical assumptions are accounted 
in the various photovoltaic (PV) cost 
elements. This enables stakeholders to 
identify hidden technical risks and their 
potential impacts. 

Project developers, banks and asset 
managers use PV financial models to evalu-
ate the profitability of a PV project. The 
capital expenditure (CAPEX) is strongly 
influenced by the construction costs. 
In a few cases, the considered technical 
assumptions are clear before the final 
CAPEX value is determined. Furthermore, 
financial models normally only make use of 
a single number for the CAPEX value and 
it is not a common practice to account for 
the inherent uncertainties of the CAPEX 
value in the financial model. 

Technical assumptions are also impor-
tant when determining the operational 
expenditure (OPEX). OPEX values should 
reflect the expected wear-out profile of the 
individual components. Such expendi-
tures should be calculated using technical 
parameters that describe the technical 
lifetime profile of the equipment instead 
of the financial lifetime of the project, 
as these can often differ significantly. 
Regarding the monitoring of the plant, this 
typically focuses on the performance ratio 
(PR) and technical availability as these key 
performance indicators are of high impor-
tance in ensuring the overall profitability of 
the project.

When estimating the expected yield 
of a PV plant for financial risk assessment 
purposes, the correct identification and 
quantification of uncertainties is crucial. 
The estimation and evaluation of the PV 

energy yield comes with large uncertain-
ties introduced by the different elements 
in the PV energy conversion chain. It is also 
essential when comparing the measured 
versus expected values as indicators for 
O&M decisions. For both purposes, reliable 
uncertainty measures are essential.

An overview of the energy flow in 
a grid-connected PV system with the 
uncertainties related to each conversion 
step is shown in Figure 1 as presented in 
[2]. The illustration highlights the impor-
tance of the correct uncertainty quanti-
fication when calculating the different 
performance indicators of a PV system. In 
general, the measured/expected electricity 
production or system yield is reported 
together with the PR, which quantifies the 
overall efficiency of energy conversion of 
the PV system under operating conditions. 
The PR is the ratio of the system yield Yf 
to the reference yield Yr. It should always 
be accompanied by an uncertainty, which 
in turn depends on the uncertainty in the 

final yield Yf and reference yield Yr quanti-
fication/estimation. Detailed explanation 
and examples of how these uncertain-
ties are calculated and combined are 
available in the EU-funded Performance 
Plus Project report, “Best Practice Guide 
On Uncertainty in PV Modelling” [3] and 
further developed and complemented in 
[1] and [2].

Solar resource quantification 
uncertainties
One of the main risks during the opera-
tional phase of a PV project arises from the 
uncertainty on the estimates of energy 
yield done during design phase. If the 
actual energy yield does not meet the 
initial estimates, the entire investment 
can be compromised as less revenue from 
energy sales will directly impact the servic-
ing of the debt or the investment return. 
This scenario can result from, among 
other factors, long-term solar resource 
effects, component failures, defects, forced 
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Figure 1. Energy flow diagram in a grid-connected photovoltaic system; in black, the 
measured/calculated parameters and in blue the related uncertainties
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outages, higher degradation rates than 
expected, etc.

The bankability of a PV project largely 
depends on the uncertainty of the solar 
irradiation data obtained during the solar 
resource assessment phase. The uncertain-
ty of long-term average solar irradiation is 
therefore a dominating parameter in risk 
assessment of PV projects. This uncertainty 
depends in turn on several aspects such 
as the quantification of the solar resource, 
the models used, the long-term solar 
resource variability and trends, etc. To a 
large extent, the long-term irradiation 
uncertainty depends on the source of 
the data and the reference period used. A 
recently published white paper by Kipp & 
Zonen and 3E presents in greater detail the 
benefits of both pyranometer and satellite 
irradiance data for utility-scale solar energy 
parks and recommends the use of both 
sources as these are complementary [4].

While on-site, ground-measured irradi-
ance data from a high accuracy pyranom-
eter correctly installed and maintained is 
the most accurate solution even over short 
periods of time (as little as a minute to an 
hour), data derived from satellite measure-
ments comes very close to the on-site 
measurement uncertainty over longer 
time periods such as months and years. 
Satellite irradiance data is increasingly 
being used in both utility-scale solar parks 
and in smaller installations since it is easy 
to acquire; just a subscription to a service 
provides a high availability of data with 
good time resolution and spatial coverage. 
For most locations on earth, satellite data 
provides a useful historical database for 
site prospecting and for optimising the 
site-specific design of solar power plants. 
This data is often used as an input for 
long-term yield assessment and to calcu-
late a reference yield for monitoring and 
business reporting. 

State-of-the-art satellite irradiance data 
providers use advanced models which 
have increased significantly the accuracy 
of the data throughout the day and under 
complex cloudy conditions. However, as 
with any model, satellite irradiance data is 
subject to uncertainties. The yearly differ-
ence between state-of-the-art satellite 
irradiation data and on-site measured data 
collected by national weather services 
from over 200 meteorological stations is 
shown in Figure 2. The percentage differ-
ence between the satellite irradiation 
data and high accuracy on-site measured 
data over one year is in the order of ±2.5% 
to ±3% for many places across western 
Europe. Figure 2 also highlights the 
importance of having dense networks of 
high quality on-site measurements as this 
enables the continuous accuracy improve-
ment of satellite irradiance data over 
complex conditions. 

Reducing the uncertainty on long-
term solar resource estimates by 
extrapolating short-term measured 
datasets
The use of long-term solar resource 
site adaptation techniques potentially 
mitigates the risk of an overestimation of 
the solar resource in the initial assessment 
during project development. An overesti-
mation of energy yield will directly impact 
the estimated investment returns as the 
actual energy production may not meet 
the initial estimates.

The uncertainty of long-term satellite 
irradiation data can be further reduced 
with the help of high quality on-site 
measured irradiation, combining the data 
of a short period of record but with site-
specific seasonal and diurnal characteris-
tics with a data-set from a long period of 
record with not necessarily site-specific 
characteristics. Upon completion of the 
measurement campaign (typically one 

year), different methodologies can be 
applied between the measured data at 
the target site, spanning a relatively short 
period, and the satellite data, spanning a 
much longer period. The complete record 
of satellite data is then used in this relation-
ship to predict the long-term solar resource 
at the target site, reducing the uncertainty 
on the long-term estimates.

Solar resource variability 
The variability of the solar resource is 
defined as the ratio of the standard devia-
tion to the average global horizontal irradi-
ation over a long-term historical period 
of typically 10 to 20 years. For example, in 
Europe this can range from about ±4% up 
to ca. ±7% depending on weather condi-
tions. This value is typically calculated from 
long-term databases providing yearly data 
over a historical period of at least 10 years.

Recent publications suggest the use of 
different methods to account for and to 
mitigate the impact of the long-term solar 
resource variability and trends in energy 
yield calculations [1]. For example, the 
proposed method in Figure 3 accounts for 
the effect of solar resource variability and a 
long-term trend as part of the uncertainty. 
This method is clear for cash flow analysis 
(uncertainty of single years). However, 
when assessing the risk of multiple year 
sums, the method still needs further 
development. 

Independently of the statistical method 
used for the trend detection and future 
long-term irradiation prediction, the 
methodology must be clearly documented 
to allow the correct interpretation of the 
results, especially considering the increas-
ing interest in financial models for PV plants 
beyond year 25.

Energy yield estimation
Further uncertainties arise from the 
estimation of the long-term yield of a PV 

Figure 2. Percentage difference between state-of-the-art satel-
lite irradiance data and ground station data in 2012 measured 
using high quality pyranometers maintained by the national 
public weather services

Figure 3. Forecast 
of future long-
term irradiation 
based on the 
average of 32 
meteorological 
stations in the 
Netherlands 
using the ARIMA 
(0,1,1) model 
without trend
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estimation of the energy yield are summa-
rised in Table 1. Further explanation and 
examples of how these uncertainties are 
calculated and combined are available in 
[1] and [3].

Several modelling steps, such as the 
calculation of the effective irradiance after 
reflection losses, thermal losses due to 
PV module physical characteristics and 
environmental conditions and conversion 
from DC to AC (i.e. inverter model), are well 
described and when using state-of-the-art 
models, the uncertainties of these model-
ling steps are rather small compared, for 
example, with the solar resource-related 
uncertainties. However, other additional 

plant during its financial lifetime. These 
uncertainties are related to the different 
modelling steps which rely on several user 
assumptions, often based on user experi-
ence or judgement. In general, technical 
project description parameters do not 
represent a significant uncertainty when 
the project is in an advanced design phase. 
However, some technical parameters, such 
as the nominal PV module power and 
tolerance, are based on approximations 
and therefore will have an impact on the 
overall uncertainty when calculating the 
expected energy yield of the PV plant. 

Typical uncertainty ranges for the 
different elements involved in the overall 

Table 1. Typical uncertainties in the different conversion steps

Mitigation measure Impact/explanation

✓ Use state-of-the-art modelling software to calcu-
late the expected energy yield of the system

Lower uncertainty in the overall energy yield estimation

✓ Verify nameplate power of the PV modules 
used in simulations with the flash test reports 
supplied with the modules

The uncertainty on the nominal PV module power and tolerance can be significantly decreased by 
performing flash tests. For example, independent test facilities typically guarantee the measured values to 
±1.5 to ±2%.

✓ Use methods to account for the effect of differ-
ent degradation behaviour over time (e.g. linear 
vs stepwise degradation)

PV module degradation over time may not always be linear. Using models to simulate the effect of differ-
ent degradation profiles during the financial lifetime of the project can mitigate risks arising during the 
operation phase.

✓ When estimating soiling losses, use models that 
account for different factors including cleaning 
schedule, monthly rainfall profiles and humidity 
information among others

The use of models that account for monthly rainfall, humidity, and cleaning schedules can help to reduce 
significantly the uncertainty and to improve the OPEX during the operation phase. For example, for a PV 
plant located in a tropical desert climate (e.g. Dubai) the combination of the high occurrence of dust parti-
cles and high humidity may drastically reduce the yield, with soiling rates of up to 0.5%/day and up to 60% 
losses after a sand storm. The use of advanced models during the planning phase can help to determine a 
cost optimisation of the cleaning schedule.

✓ Use the expected overall unavailability for the 
calculation of the initial yield for the project 
investment financial model instead of the O&M 
guaranteed values

When calculating the financial income from electricity production of a PV plant, the availability assump-
tion in the PV financial model should reflect the overall plant availability. This means an additional unavail-
ability beyond the O&M service should be considered and added to the overall plant unavailability. This 
additional unavailability may be caused e.g. due to grid issues or other external factors that cannot be 
controlled by the operator, and thus may not be covered by guarantees.

✓ Take into account the technical lifetime of the 
devices as this can often be different than the 
financial lifetime of the project

The technical lifetime of some PV components may be shorter than the financial lifetime of the project. 
For example, PV inverters often have a technical lifetime of 10 years which in many cases would be shorter 
than the financial lifetime of the project.

✓ Use empirical methods for risk assessment 
calculations (e.g. P90) when possible

When calculating exceedance probabilities for risk assessment (e.g. P90), empirical methods based on 
actual available data should be used instead of assuming a normal distribution for all parameters. The 
assumption of a normal distribution does not necessarily apply to all parameters and assuming this behav-
iour can result in serious deviations.

✓ Consider re-assessing the long-term yield 
estimate of the plant using actual operational 
data

Using actual production once the PV plant is in operation can allow a very precise prediction of the long-
term yield with a considerably reduced uncertainty. The adjustment of the financial models after e.g. one 
or two years of operation could potentially reduce the long-term estimation uncertainty by a factor of two.

 Uncertainties Range

Solar resource Climate variability ±4% - ±7%

 Irradiation quantification ±2% - ±5%

 Conversion to POA ±2% - ±5%

PV modelling Temperature model 1°C - 2°C

 PV array model ±1% - ±3%

 PV inverter model ±0.2% - ±0.5%

Other Soiling, mismatch, degradation,  ±5% - ±6% 

 cabling, availability, etc.

Overall uncertainty on estimated yield ±5% - ±10%

losses occurring typically in the field, such 
as soiling, mismatch, degradation profile 
over time, snow effects and others, are 
often only partly simulated or accounted 
for by the simulation software. Therefore, 
users often have to estimate many of these 
losses and their effects based on the little 
information available and on their experi-
ence.

In general, it is not a simple task to 
evaluate several of the losses that occur in 
the field since they are often influenced by 
external parameters. Therefore, it becomes 
even more difficult to assess the uncer-
tainty of these estimations. For example, 
when estimating soiling losses in addition 
to assessing the surrounding areas for the 
presence of potential soiling issues, one 
should also use models that account for 
monthly rainfall, humidity information 
and cleaning schedule, among others. 
Furthermore, a good alignment between 
the planning phase and the maintenance 
schedule during the operation phase can 
mitigate the risk of under/overestimating 
the effect of soiling losses considerably.

Table 2 presents some mitigation 
measures that can be applied to reduce 
the uncertainties, and therefore risks 
associated with the energy yield estima-

Table 2. Mitigation measures for risks associated with the energy yield estimation during the planning phase of a PV project



54 |  February 2018  |  www.pv-tech.org

Design and Build Technical Briefing

from measured 15-minute data. Unfortu-
nately, it was not possible to determine the 
unavailability for all PV plants under study, 
since the detailed O&M report was not 
available for some plants and some plants 
only had monthly data available.

Figure 5 highlights that for some PV 
plants in the portfolio, the actual unavail-
ability is very high compared with the initial 
expectations (e.g. PV plant number 28). 
Moreover, the mean yearly unavailability of 
the analysed portfolio is around 2%. 

The main results are shown in Figure 6. 

The initial yield estimates for the first year 
of operation (P50) is represented by the 
zero line. The red and green background 
colours represent the initial P90 and P10 
estimates, respectively. They are typically 
situated between ±7% and ± 9% from the 
P50 for a single site. The difference of the 
actual electricity production during the 
first year of operation from the P50 yield is 
represented by the blue bars. In this case, a 
negative blue bar means that less electric-
ity was produced than initially expected. 
Statistically, eight out of 10 bars should lie 

tion during the planning phase as proposed 
by the IEA PVPS Task 13 group as presented 
in [2].

How accurate are PV yield estimates? 
Validation of long-term yield 
estimates and their level of confi-
dence
The energy yield of a PV plant over its finan-
cial lifetime is estimated during the design 
phase with a long-term yield assessment. 
The long-term yield assessment usually 
returns the so-called P50 and P90 yields 
which represent the 50% and 90% exceed-
ance probabilities, i.e., the energy yields that 
will be exceeded with a probability of 50% 
and 90%, respectively. These values are used 
as input for the financial model of the PV 
investment, and are usually evaluated for 
the first year of operation and for the overall 
financial lifetime of the plant. The correct 
calculation of the P90 considering all related 
uncertainties is essential for the evalua-
tion of the PV investment. Moreover, when 
investing into larger portfolios of PV plants, 
the risk for the investor is finally expressed 
by the P90 yield of the portfolio rather than 
that of each individual plant. Up to now, for 
commercial projects little validated knowl-
edge about the quality of their P50 and P90 
yield estimates has been available in the 
public domain.

The Solar Bankability project together 
with IEA PVPS Task 13 group [1], [2] explored 
the quality of the initial P50 and P90 yield 
estimates on plant as well as on portfolio 
levels in order to further quantify the poten-
tial reduction of risk with larger portfolios. 
The purpose of this work was to validate the 
initial long-term yield estimates based on 
monitoring data over the first years under 
operation. 

The correlation between P50 and P90 
yield estimates and the actual electricity 
production were compared for a portfolio 
of over 40 PV plants. The sample comprises 
rooftop and ground-mounted systems 
and covers a wide range of plant size from 
10kWp up to 12MWp. The data sets for the 
validation cover between one and four 
years of operational data. The PV plants with 
installation type and available data are listed 
in Figure 4.

Information on PV plant unavailability 
was collected for each individual plant and 
analysed. Figure 5 shows the actual percent-
age of unavailability (downtime) for most 
of the analysed PV plants. For most cases, 
the unavailability data comes directly from 
the detailed O&M reports. Moreover, when 
possible, the unavailability was calculated 

Figure 4. PV plants under study with available electricity production data and installation type

 Figure 5. Actual time-based unavailability data from most of the PV plants in the portfolio

Figure 6. Difference in specific yield corrected for actual unavailability. The orange arrows highlight the 
effect of the unavailability correction for some examples
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within the red and green region, one should 
lie above and one below.

For most of the PV plants analysed across 
the portfolio, the actual electricity produc-
tion during the first year of operation (blue 
bars) lies within the expected uncertainty 
range. At plant level, the yields are close 
to the ideal scenario but slightly biased 
negatively by -1.15%. However, while only 
one PV plant is situated above the P10 
confidence interval , the portfolio contains 
six plants for which the actual production 
was below the P90 confidence interval. 
These deviations for some plants had to be 
further analysed to understand the gaps.

The orange arrows in Figure 6 point at 
the plants with significant durations of 
plant unavailability. When correcting the 
energy yield for the durations of unavail-
ability, the actual electricity production 
for many of these plants remains within 
the anticipated confidence range. In other 
words, their initial long-term yield estimates 
did not account for the unexpectedly high 
losses due to the plants being unavailable. 
More generally speaking, the distribution of 
actual energy yields versus the initial long-
term yield estimates is relatively narrow 
when excluding significant durations of 
unavailability and, hence, the initial long-
term yield estimates were quite good.

At portfolio level, the overall 
(non-weighted) mean difference between 
initial long-term yield estimates and the 
actual yield over the portfolio is -1.15%. This 
means that, over the analysed portfolio, the 
yield is slightly lower than initially estimated 
during the design phase. Furthermore, as 

shown in Figure 7, the dispersion (NRMSE) 
is around 4.4% for the analyzed portfolio. 
These variations lie within the normal 
expected ranges as reported in scientific 
literature. These deviations are typically 
expected to be mainly due to the variability 
of the solar resource and other site-specific 
losses that are not precisely modelled 
during the design phase. Moreover, some 
overestimations are cancelled out with 
some other underestimations across the 
portfolio as shown in Figure 6.

The difference and its distribution for 
plane-of-array (POA) irradiation, perfor-
mance ratio (PR) and specific yield for the 
entire portfolio are summarised in Figure 
7. Such differences are represented using 
‘violin plots’ which are a combination of box 
plots and kernel density plots. This kind of 
plot gives not only the valuable information 
of a box plot but also shows the probability 
distribution (density) of the data at different 
values.

As shown in Figure 7, the largest gap 
between initial expected and actual 
values comes from the performance ratio 
estimates. As previously highlighted, the 
initial estimates of system losses depend 
on several factors. In addition to the PV 
software modelling accuracy, several user 
estimates and assumptions affect the yield 
estimate. Regarding the POA irradiation, the 
results presented here are the outcome of 
comparing the initial estimate done during 
the initial yield estimation against the 
irradiation from state-of-the-art satellite-
derived data for the first year of operation 
as, unfortunately, not all PV plants in the 

portfolio had good quality on-site solar 
irradiance sensor measurements. 

In conclusion, the initial energy yield 
estimates for the portfolio under study 
generally agree quite well with the actual 
electricity production over the first years. 
The NRMSE across the analysed portfolio of 
over 40 PV plants is approximately 4.4%. By 
contrast, the uncertainty in long-term yield 
estimates for a single site is typically around 
±5% to ±10%. The results of this PV portfolio 
use case show that this uncertainty range 
could decrease for a statistically meaning-
ful portfolio of several PV systems down to 
around 4.4%. The outliers with energy yields 
below the P90 yield were largely caused by 
plant un-availabilities. Therefore, the risk of 
unavailability needs to be addressed next to 
the resource uncertainty and the uncer-
tainty of the PV system model. This risk 
can be mitigated through good warranty 
conditions and operation and maintenance 
(O&M) contracts. 

Investing in a big portfolio of PV plants 
may be seen as a risk mitigation strategy 
for investors through diversification of risks. 
For an entire portfolio of PV plants, the 
overall risk of not achieving the expected 
energy yield decreases with increasing size 
and spatial spread of the portfolio. Several 
variables such as the number of plants, 
their geographical spread, PV module 
technologies, the type of installations, 
system configuration, etc. will influence 
the resulting overall uncertainty. Neverthe-
less, the practices and potential sources of 
uncertainties highlighted in this text must 
be applied on a project-by-project basis to 
ensure best results.

Figure 7. Violin plots for the difference in POA irradiation, PR and resulting specific yield between initial 
expected yield and actual yield for the analysed portfolio
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