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Novel strategies for PV
system monitoring

System monitoring | Maximising production from a PV system is critical, since nearly all of the
investment is made prior to system activation. Monitoring of PV systems allows operators to identify
any performance or safety problems early so that they can be repaired quickly, thus minimising
energy losses. Joshua Stein of Sandia National Laboratories and Mike Green of M.G. Lightning
Electrical Engineering discuss some new monitoring strategies that are necessary for expeditiously
identifying and locating system faults

he state of the art in PV system However, neither of these methods is
Tmonitoring is relatively simplistic, very effective in discovering the source
relying either on comparisons of of identified problems or in identifying
outputs between various parts of the component-level failures, especially if
system (e.g. inverters), or on an evalu- they occur at the module or string level
ation of a performance metric which and thus have only a small, proportional
normalises output to available irradiance  effect on system output at the inverter
and other environmental conditions. or plant energy meter: hence the need
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2. Performance metric monitoring

A good overview of current best
practices employed in PV system
monitoring is discussed in a recent
report from the International Energy
Agency'’s (IEA) Photovoltaic Power
Systems Programme (PVPS) Task 13 [1].
Comparative monitoring
Comparative monitoring is used in
smaller systems in which no meteoro-
logical sensors are installed. In this
method, the power output from various
inverters is compared. The preferred
method is to normalise the energy with
respect to the installed power of the

Inverter 1 -

array: this makes the comparison easier
when the inverters are of different sizes
or the number of modules attached

to each inverter differs. Fig. 1 presents
the advantage of a normalised energy
comparison as opposed to a direct
comparison of energy produced by
inverters of different sizes. The inverter
shown in red appears to experience a
problem on the fifth day, as evidenced
by a relative reduction in its output
when compared with two other nearby
inverters. This is readily apparent in

the normalised graph (Fig. 1 (b)), but
difficult to detect in the raw energy data
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vFigure 2 (top).
Comparative
monitoring
between two
microinverters
plotted as a
function of

sun position
illustrates
shading effects.

vFigure 3
(bottom).
Comparison of
three different
performance
metrics applied
to the same
system data.
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graph (Fig. 1(a)). This method only works
when there is more than one inverter or
monitoring point to compare.

For a single inverter (e.g. residen-
tial system), this method is not very
useful, unless other systems from the
same neighbourhood can be used for
comparison. However, since different
small systems usually differ in array tilt
and orientation, even these compari-
sons are difficult to perform in practice.
In the case where a local monitoring
company has access to a number of
systems in the same neighbourhood,
it is possible to perform comparative
monitoring, even with the differences in
system orientation, if the comparisons
are carried out at particular times of the
day and sun positions. This method is
used by a number of PV-monitoring and
operations-and-maintenance (O&M)
companies.

When differences between inverters
are observed, plotting these differences
as a function of other variables can be
informative. For example, Fig. 2 shows
the difference in power between two
inverters (in this case, microinverters)
plotted as a function of sun position. The
negative differences that appear in the
late afternoon are due to shading of one
of the systems by a nearby large power
distribution pole. Simply comparing
these differences daily, as in Fig. 1, might
mislead the operator into thinking that
there were equipment problems.

Performance metric monitoring
Monitoring using a performance

metric simply involves comparing the
measured performance with a predic-
tion of what the performance should
have been, as determined from a model.
Performance metrics vary in sophistica-
tion and in their required inputs; the
more inputs needed, the more barriers
there are to implementation, because of
the lack of installed sensors.

The performance ratio (PR), currently
the most popular metric, is also the
least accurate measure of performance.
Defined in IEC 61724, the PR is essen-
tially a quantity that normalises the
energy output of a PV system with
respect to measured insolation and
DC system capacity at standard test
conditions (STC). This metric requires
the measurement of plane-of-array
(POA) irradiance in addition to AC power
output. The standard version of the PR
does not include corrections for changes

www.pv-tech.org | February 2015 |63



LLINFHENHY Technical Briefing

11-Mar-2014

(W]
[
o
o

T

Powe
o o
[ ] o
T T

n " I
10

in temperature, spectrum or angle of
incidence of the sunlight, which all
affect the performance of a PV system:
PR values will therefore vary when any of
these inputs change (e.g. as a function
of weather, season or time of day). Since
the purpose of employing a perfor-
mance metric for monitoring is to use
variations in the metric as an indicator
of performance problems, the use of

the standard PR is not a very sensitive
indicator of health, because of its natural
variations.

A newer version of the PR, called the
weather-corrected performance ratio
(WCPR) [2], has been proposed and
shown to better stabilise annual calcula-
tions, but has not yet gained much of a
following in the industry. One possible
reason for the slow adoption of the
WCPR is that it requires the measure-
ment of more quantities, such as back-
of-module temperature or air tempera-
ture and wind speed, in addition to POA
irradiance.

Perhaps the best performance metric,
which is referred to as the performance
index (P1), is the ratio of measured
performance and predicted perfor-
mance using the best performance
model available. This metric is typically
used for large installations where
sufficient meteorological inputs are
measured to run a full PV performance
model. Such models predict perfor-
mance by accounting for the effects of
irradiance, temperature, spectrum, angle
of incidence, soiling, etc. There are many
commercial examples of such models
(e.g. PVsyst and PVSol). There are also
free modelling applications available
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(e.g. PVWatts, SAM and PV_LIB Toolbox,
among others).

Fig. 3 compares the three perfor-
mance metrics, calculated daily over one
year using PV system-monitoring data
from a small, fixed tilt (1.1kW) c-Si array
deployed in Albuquerque, New Mexico,
USA. Noteworthy features include the
seasonal dip in PR values (blue) during
the summer due to high temperatures,
the lack of such dip in the WCPR values
(red), and significantly less scatter in the
Pl values (green) due to the ability of
the performance model to account for
more-realistic performance processes
(spectral effects, angle of incidence,
nonlinear low-light efficiency, etc.). The
remaining scatter represents either
variables that are not controlled (e.g.
soiling) or measurement or modelling
uncertainties.

New novel approaches to
monitoring PV systems

As described above, the current state of
the art in PV system monitoring is gener-
ally limited to comparisons between
systems and the use of performance
metrics, neither of which includes
information about the nature of any
discovered problem or its location. New
monitoring approaches are needed that
can quickly identify, classify and locate
faults, ideally before they result in any
system losses. The following sections
will introduce a number of different
approaches, ranging from laboratory
and commercial research projects to
early commercial deployments. What
must be considered when evaluating
any monitoring solution is that the
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Figure 4. One day
of module-scale
monitoring data
from over 400

PV modulesina
500kW PV array
ata PV plant near
Santa Fe, New
Mexico.

monitoring method cannot cost more
than the value of the energy that is
recovered. This means that the best
solutions for small residential systems
will quite likely be different from those
for large commercial- and utility-scale
systems.

Community-scale monitoring

One of the barriers to employing perfor-
mance metrics is the need for local
irradiance measurements at the POA.
One solution that is being employed

by M.G. Lightning is to use communal
irradiance and weather stations as

the input to performance metrics for
systems in the same vicinity (e.g. city or
town). One challenge of this approach is
that it may not work during certain types
of weather: for example, under partly
cloudy skies, cloud shadows will affect
some systems and not others, even over
relatively small distances. Fortunately,
many regions experience at least some
period of time each week when clear
conditions prevail, even if only for part
of the day. Another source of irradiance
data is satellite irradiance vendors. While
the errors in these data sources can be
large for short time periods, over longer
periods beyond a few days, the errors
decrease significantly and this data can
provide valuable inputs to calculations
of performance metrics.

Another issue that is easily solved
relates to systems having different
orientations. In this application, simple
models are available to translate
horizontal irradiance to different tilt
angles for use in calculating a perfor-
mance metric. However, these models
are most accurate during clear sky
conditions.

Module-scale monitoring

Several companies have developed
module-scale monitoring solutions.
Perhaps the best-known examples of
these are microinverters, almost all of
which include the ability to monitor the



output from each module individually.
This feature is one of the main selling
points used to market this technology,
and can be quite valuable for small
residential installations that suffer from
partial shading from trees and building
features. However, the higher costs and
lower inverter efficiencies of microin-
verters make their use less desirable in
large systems.

Other companies offer module-scale
monitoring devices that attach to the
module in series with the standard
connectors and communicate wirelessly
to a base station. These devices can be
either attached to every module in the
field or connected to only one or two
modules per series string. In the string
configuration they measure the current
and voltage in the string, and this infor-
mation may be sufficient for detecting a
single-module failure.

Sandia National Laboratories (Sandia)
recently participated in a project to
evaluate module-scale monitoring at a
1MW single-axis tracking PV plant near
Santa Fe, New Mexico. In half of the
plant (500kW), module-scale monitoring
was installed on one module per string,
for nearly 400 modules in the array. Fig.
4 shows an example of a clear day of
data. A few modules (9) were ‘dead’ and
reported no power output, several (~20)
performed at approximately two-thirds
power, a few had noisy signals, and the

majority (~350) operated within around
+20W of one another. The modules
running at two-thirds power most likely
had a substring of cells that was discon-
nected, possibly arising from a failed
bypass diode.

The fidelity of this level of monitoring
is impressive and provides very detailed
information about this plant. If the costs
associated with such a solution are
sufficiently low, this technique provides
valuable information to a system owner.

Health of the DC circuit

In addition to monitoring the power
output from various parts of the PV
array, it is also possible to collect

other types of data that can be used

to assess the health of the PV system
more directly. For example, the series
resistance (R, ) of a PV system (i.e. cell,
module or array) represents the sum of
the resistances contributed by all of the
series-connected cell layers, contacts,
and wiring between both ends of the
system'’s circuit. Because the series
resistance value is affected by changes
in resistance in any of these compo-
nent and subcomponent parts, the
monitoring of series resistance over time
provides valuable information about the
system'’s electrical health and material
properties. Increases in series resistance
have been linked to corrosion inside
modules and connectors, UV degrada-

Figure 5.
Validation results
demonstrating
anew method
for monitoring
series resistance
without the

need to collect
and analyse -V
curves.
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tion of silicon, and other processes that
contribute to overall degradation of PV
system performance. Typical methods
used to measure R, involve measuring
current-voltage (/-V) curves of modules
on a flash tester or of strings in the field,
and fitting equivalent circuit models
(e.g. single-diode model) to the data;
R.is one of the model parameters that
results. A problem with this approach is
that it is largely manual, requiring labour
and specialised equipment. In addition,
R, varies as a function of irradiance and
its determination is therefore usually
referenced to STC conditions.

Sandia and Draker Energy have
collaborated on a demonstration of
a new methodology to monitor R,
without the need for -V curves [3].
Instead, measurements commonly
available from an inverter (maximum
power DC current and voltage) and the
open-circuit voltage, which the authors
believe should be relatively easy to
obtain, are used to estimate values of
R.This approach was tested on a string
of 12 PV modules in the field, and fixed
resistors were added in series to mimic
increases in R Fig. 5 shows the results of
the predicted R, values as a function of
irradiance for various amounts of added
resistance. The fact that each dataset
is distinct means that changes in R are
readily detectable.

Sandia is also working with several
companies to develop new monitor-
ing hardware that would be able to
automatically bypass either a single
module or a single string, sweep its
-V curve and then reconnect it to the
system without disrupting the inverter
from delivering power to the grid from
the rest of the array. Single-module units
from Stratasense [4] are currently in the
process of being tested, and work with
Pordis, LLC [5] is under way to develop
a multi-string automated /-V tracer,
designed for larger commercial PV
systems. The capability to automatically
measure /-V curves from the PV system
creates numerous opportunities for
more-detailed monitoring in the future.

Health of the whole system

A promising approach to monitoring the
whole system has been demonstrated
on a small scale using neural network
algorithms and is soon to be offered
commercially to all sizes of PV system
using machine-learning algorithms (Fig.
6). After the system has been commis-
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Figure 6. Conceptual diagram of how a learning algorithm PV

model can serve as a monitoring system.
Source: Riley and Johnson [6].

Solar Meter

data collected from other systems in
the region, including weather and
irradiance stations and/or satellite data,
to determine the health status of a PV
system. In addition, if IV curves can
be automatically collected at a low
cost without disrupting PV generation,
such information would be invaluable
for detecting module degradation,
locating system faults, and provid-

ing diagnostic information for O&M
activities, including commissioning. In

O other words, be on the lookout for new

monitoring products and services in

Wind the near future.

Sandia is a multi-programme labora-
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sioned, a learning algorithm is trained
to estimate AC power production from
available meteorological data (irradi-
ance, temperature, wind speed, time

of day, etc.). Research has shown that
this methodology can be as accurate as
the best PV performance models; the
advantage of the learning algorithmis
that it does not require design specifica-
tions for the system components, which
can be hard to collect [6,7]. Current
research is focused on whether learning
algorithms are able to distinguish signa-
tures from specific types of fault (open
circuit, short circuit, bypass diode failure,
excessive soiling, etc.). If these efforts
are successful, it is conceivable that
monitoring systems of the future will
send out an alarm indicating the type of
fault that is suspected.

Prognostic monitoring

Prognostic monitoring is intended
to detect and interpret signals which
can indicate that a problem or fault
is likely to happen in the near future.
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Machine-learning algorithms are
designed to learn the normal behav-
iour of monitored inverter parameters

in conjunction with onsite weather
conditions taken from a weather server.
When a parameter strays from what is
expected, an alarm is issued. Work led by
M.G. Lightning in association with the
IEA PVPS Task 13 has begun to catalogue
these precursors to faults. The goal is

to develop a predictive system that will
alert system operators of an impending
problem. This system with a prognos-

tic capability would monitor system
performance and be able to predict
imminent faults before they occur, just
as an engine check light helps avoid
catastrophic failures in a motor car.

The future is ripe for innovative PV
monitoring. The authors believe that
monitoring systems of the future will

be able to collect data from inexpensive
sensors and use it in conjunction with
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