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Why measure PV output 
variability?
Whether forecasting loads and scheduling 
capacity several hours ahead or planning 
for reserve resources years into the future, 
utilities need to be able to quantify the 
expected output variability of their 
distributed solar resources – whether 
they consist of thousands or hundreds 
of thousands of PV systems spread 
across large geographical territories. The 
inability to adequately quantify PV output 
variability can have real operational and 
financial impacts. For example, a utility 
may underestimate reserve requirements, 
which would result in a failure to meet 
reliability standards and an unstable 
power system. On the other hand, 
overestimating reserve requirements may 
result in an unnecessary expenditure of 
capital and higher operating costs.

Variability over time intervals ranging 
from a few seconds to a few minutes is 
of primary interest, since control area 
reserves are dispatched over such time 

intervals. For example, regulation reserves 
might be dispatched at an ISO through 
a broadcast signal every five seconds. 
Knowledge about PV f leet variability 
in five-second intervals could be used to 
determine the resources necessary for 
providing frequency regulation service in 
response to power fluctuations.

“The inability to adequately 

quantify PV output variability 

can have real operational and 

financial impacts.”
The ability to analyze PV output 

variabil ity has led to f indings that 
relative output variability across a fleet 
of PV resources decreases as geographic 
dispersion increases. This implies that, in 
the same way that smoothing occurs when 
electric loads from multiple customers are 
combined, smoothing also occurs when 

the output from multiple PV systems 
is combined, so long as the systems are 
located sufficiently far apart.

How is PV fleet variability 
defined? 

Variability of a PV fleet is defined as a 
measure of the magnitude of changes in 
its aggregate power output corresponding 
to the defined time interval and taken 
over a representative study period. Note 
that it is the change in output rather than 
the output itself that is desired. Also note 
that, for each time interval, the change in 
output may vary in both magnitude and 
sign (positive and negative). The statistical 
metric that is employed to quantif y 
variability is the standard deviation of the 
change in fleet power output.

It is helpful to graphically illustrate what 
is meant by output variability. The example 
shown in Fig. 1 shows data gathered on 
November 7, 2010 from a network of 25 
weather-monitoring stations in a 400m × 
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ABSTRACT

As the PV capacity of utility systems increases, utility planners and operators are becoming more and more concerned 
about the potential impacts of power supply variability caused by transient clouds. Utilities and control system operators 
need to adapt their planning, scheduling and operating strategies to accommodate this variability while at the same 
time maintaining existing standards of reliability. Effective management of these systems, however, requires a clear 
understanding of PV output variability and the methods to quantify it. The present objective is to develop analytical 
methods and tools to quantify PV fleet output variability. This paper presents a method using location-specific inputs for 
estimating correlation coefficients, and discusses the key findings that resulted from applying the method to three separate 
geographical regions in the USA. The approach has potential financial benefits for systems that are concerned about PV 
power output variability, ranging from individual distribution feeders to state-wide balancing regions.

Figure 1. Data from a 400m × 400m grid at Cordelia Junction in California (November 7, 2010): (a) irradiance; (b) 10-second 
change in irradiance. A network of 25 locations reduces the 10-second variability by more than 70%. 
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400m grid located at Cordelia Junction in 
California [1]. Fig. 1(a) shows measured 
10-second irradiance data (PV power 
output is almost directly proportional to 
irradiance); Fig. 1(b) presents the change in 
irradiance using a 10-second time interval. 
The grey lines correspond to irradiance 
and variability for a single location, and the 
red lines correspond to average irradiance 
distributed across 25 locations. The results 
suggest that spreading capacity across 25 
locations rather than concentrating it at a 
single location reduces variability by more 
than 70% in this particular instance.

PV variability measurement 
approaches

Numerous approaches exist for calculating 
the output variability of a f leet of PV 
systems. One of these might be referred 
to as a ‘fleet computation’ approach and is 
taken as follows:

1. Id e n t i f y  th e  P V  s y ste m s  th at 
constitute the fleet to be studied.

2. Select the time interval and time 
period of interest (e.g. 1-minute 
changes evaluated over a 1-year 
period).

3. Obtain time-synchronized solar 
irradiance data for each location 
where a PV system is to be sited.

4. Simulate the output for each PV 
system using standard modelling 
tools.

5. Sum the outputs from the individual 
systems to obtain the combined fleet 
output.

6. Calculate the change in fleet output 
for each time interval.

7. Calculate the resulting statistical 
output variability from the stream of 
values.

A more viable approach is to streamline 
the calculations through the use of a 
general-purpose PV output variability 
methodology. The method needs to 
quantify short-term fleet power output 
variability using the observations that:

sky clearness and sun position drive the 
changes in the short-term output for 
individual PV systems;

physical parameters (i.e. dimensions, plant 
spacing, number of plants, etc.) determine 
overall fleet variability. 

Hoff and Perez [2] have already developed 
a simplified model as a first step towards 
a general method to quantify the output 
variability resulting from an ensemble 
of equally-spaced, identical PV systems. 

Output variability was defined as the 
standard deviation of the change in output 
over some time interval (such as 1 minute) 
using data taken from some time period 
(such as 1 year). The simplified model 
covered the special case where the change 
in output between locations is uncorrelated 
(i.e. the impacts of clouds at one site are too 
distant to have predictable effects at another 
for the particular timescale considered), 
the fleet capacity is equally distributed, and 
the variance at each location is the same. 
Under these conditions, it was shown that 
fleet output variability equals the output 
variability at any one location divided by 
the square root of the number of locations. 
Other investigators, for example Mills and 
Wiser [3], have derived a similar result that 
relates variability to the square root of the 
number of systems when the locations are 
uncorrelated.

Development of analytical 
tools to quantify PV output 
variability

Utility planners clearly require a tool that 
can reliably quantify the maximum output 
variability of PV fleets using a manageable 
amount of data and analysis. The methods 
referred to above would potentially meet 
this requirement if the changes in output 
between locations were uncorrelated (i.e. 
correlation coefficient is zero). In actual 
fleets, however, PV systems will generally 
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have some degree of correlation, so any 
planning tool will have to incorporate 
correlation effects into the calculation of 
actual fleet variability.

“Any planning tool will have to 

incorporate correlation effects 

into the calculation of actual 

fleet variability.”
In this study a step has been taken 

towards a general method by analyzing 
the correlation coefficient of the change 
in clearness index between two locations 
as a function of distance, time interval 
and other parameters.  The analysis 
used hourly global horizontal insolation 
data from SolarAnywhere to calculate 
the correlation coefficients for 70,000 
station pair combinations across three 
separate geographical regions in the 
USA (Southwest, Southern Great Plains 
and Hawaii). The measured correlation 
coefficients taken from these combinations 
were then compared to a model that could 
prove useful when integrated into utility 
planning and operations tools.

For this method, PV fleet variability 
was defined as the standard deviation of 
its power output changes using a selected 
sampling time interval (such as 1 minute 
or 1 hour) and analysis period (such as 
one year), as expressed relative to the 
fleet capacity. To simplify the work, the 
variability was formulated in terms of the 
change in insolation rather than the change 
in PV power. 

As stated earlier, sky clearness and sun 
position drive the changes in short-term 
output for individual PV systems. Mills and 
Wiser [3] and Perez et al. [4] subsequently 
isolated the random component of output 
change and examined changes attributable 
only to changes in global clear sky (or 
clearness) index. The global clearness index 
equals the measured global horizontal 
insolation divided by the clear sky insolation.

This paper continues in the direction 
of Mills and Wiser and Perez et al. and 
focuses on changes in the global clearness 
index. The analysis is performed as follows:

1. Select a geographical region for 
analysis.

2. Select a location for the first part of 
the pair.

3. Select a location for the second part 
of the pair.

4. Select a time interval for the analysis.

5. Select a clear sky irradiance level bin.

6. Obtain detailed insolation data.

7. Calculate the change in the clearness 
index.

8. Calculate the correlation coefficient.

9. Repeat the calculation for all sets of 
location pairs, time intervals and clear 
sky irradiance bins.

Case study results

This study was carried out to investigate 
the existence of patterns that help to better 
quantify correlation coefficients. A method 
was tested that produces the desired 
output parameter of the correlation 
coefficient of the change in the clearness 
index between two separate locations. 
The inputs to this method include the 
distance between the two locations, the 
time interval and the location-specific 

Region Southwest Southern Great Plains Hawaii

Location #1 Latitude: 32° to 42° Latitude: 35° to 38° Latitude: 19° to 20°

 Longitude: –125° to –109° Longitude: –99° to –96° Longitude: –156° to –155°

 Grid size: 2.0° Grid size: 1.0° Grid size: 0.5°

Location #2  0.1°, 0.3°, …, 1.9° from location #1 0.1°, 0.3°, …, 2.9° from location #1 0.1°, 0.2°, …, 1.0° from location #1

Time intervals  1, 2, 3 and 4 hours 1, 2, 3 and 4 hours 1, 2, 3 and 4 hours

Clear sky  10 irradiance bins in 10 irradiance bins in 10 irradiance bins in 
irradiance intervals of 0.1kW/m2 increments of 0.1kW/m2 increments of 0.1kW/m2

Table 1. Summary of input data.

Figure 2. Correlation coefficients presented by time interval for the Southwest.
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parameters based on empirical weather 
data, particularly cloud speed.

Three separate geographical regions 
in the USA were selected for analysis: 
Southwest, Southern Great Plains and 
Hawaii (see Table 1). The first location 
was selected using a grid size of 2.0°, 1.0° 
and 0.5° for the Southwest, Southern Great 
Plains and Hawaii respectively. The second 
location was selected between 0.1° and 2.9° 
(about 10–300km) from the first location 

(other map coordinates were available but 
the selected points provided sufficient data 
for the analysis). 

Hourly insolation data covering the 
period January 1, 1998 to September 
30, 2010 for each of the two locations 
was obtained from SolarAnywhere [5]. 
The analysis was then performed as 
described above for time intervals of 
1, 2, 3 and 4 hours and for 10 separate 
clear sky irradiance bins. This analysis 

resulted in more than 70,000 correlation 
coefficients.

Fig. 2 presents a randomly selected 
set of correlation coefficients for the 
Southwest. The graphs in the columns 
summarize the results for each time 
interval of 1, 2, 3 and 4 hours. The 
graphs in the rows present the measured 
correlation coefficients versus several 
alternative candidate sets of variables. 
Specifically, the top row presents the 

Figure 3. Correlation coefficients presented by time interval for the Great Plains.
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correlation coefficients versus the distance 
between the two locations, while the 
middle row presents the correlation 
coefficients versus the distance divided 
by time interval. The graphs shown in the 
bottom row are the correlation coefficients 
versus the distance divided by the product 
of time interval and relative speed (this 
term is related to the dispersion factor 
DF, introduced by Hoff and Perez [2]). 
The dashed line in the bottom graphs 
represents the results of a generalized 
method, proposed in this paper for use 
in future tools, that will be validated in 
the present analysis. Calculations using 
parameters obtained from SolarAnywhere 
were used to obtain these results. 

Figs. 3 and 4 present the results relating to 
the Great Plains and Hawaii for comparison 
purposes. The patterns presented in the 
graphs are similar across all time intervals 
for the three geographical locations. 

“Critical factors that affect 

output variability are the 

clearness of the sky, sun position 

and PV fleet orientation.”

Key findings: correlation versus 
distance

Critical factors that affect output variability 
are the clearness of the sky, sun position 
and PV fleet orientation (i.e. dimensions, 
plant spacing, number of plants, etc.). To 
improve accuracy, a parameter called the 
dispersion factor (DF) was introduced. 
This factor incorporates the layout of 
a f leet of PV systems, the timescales 
of interest and the motion of cloud 
interferences over the PV fleet. 

The results of the study demonstrated 
that relative output variability resulting 
from the deployment of multiple plants 
decreased quasi-exponentially as a 
function of the generating resource’s DF. 
The results demonstrated that relative 
output variability

decreases as the distance between sites 
increases;

decreases more slowly as the time interval 
increases;

decreases more slowly as the cloud transit 
speed increases.

These findings are consistent with other 
studies. Mills and Wiser [3] analyzed 
measured 1-minute insolation data over 
an extended period of time for 23 time-
synchronized sites in the Southern Great 
Plains network of the Atmospheric 
Radiation Measurement (ARM) Program. 
Their results demonstrated that the 
correlation of the change in the global 
clearness index decreases as the distance 
between sites increases, and decreases 
more slowly as the time interval increases.

In another example, Perez et. al. [6] 
analyzed the correlation between the 
variability observed at two neighbouring 
sites as a function of their distance and of 
the considered variability timescale. These 
authors used 20-second to 1-minute data 
to construct virtual networks at 24 US 
locations from the ARM Program [7] and 
the SURFRAD Network, together with 
cloud speed derived from SolarAnywhere, 
to calculate the station pair correlations for 
distances ranging from 10m to 100km and 
for variability timescales ranging from 20 
seconds to 15 minutes. Their results also 
showed that the correlation of the change 
in global clearness index decreases as the 

distance between sites increases, and 
decreases more slowly as the time interval 
increases.

The consistent conclusions of all studies 
are that as the distance between sites 
increases, the correlation decreases, and as 
the time interval increases, the correlation 
decreases more slowly. This latest study 
presents the additional finding that the 
correlation decreases more slowly as the 
speed of the clouds increases.

Conclusions

The analysis yields several key findings. 
First, consistent with previous studies, 
the correlation coefficients decrease with 
increasing distance. Second, also consistent 
with previous studies, this decrease occurs 
more slowly with longer time intervals. 
An alternative way of viewing this result is 
that correlation coefficients decrease at a 
similar rate when plotted versus distance 
divided by time interval. Third, the scatter 
in the results is further decreased when 
a relative speed is introduced for the first 
location in the pair of locations. Finally, the 
generalized method (shown by the dashed 
black lines in the bottom row of graphs in 
Figs. 2–4) fits the empirical data quite well 
when calibrated using the location-specific 
derived input parameters.

“The scatter in the results 

is further decreased when a 

relative speed is introduced for 

the first location in the pair of 

locations.”

These results are important because 
they enable the methods to be applied to 

Figure 4. Correlation coefficients presented by time interval for Hawaii.
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fleet simulation to accurately determine 
PV fleet output without having to measure 
high-speed power or irradiance data at 
every location. 
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