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Introduction
While the solar industry is undergoing 
unprecedented levels of capacity expansion – 
exceeding 500GW across ingot/wafer, solar cell 
and module assembly segments combined in the 
first quarter of 2020 [1], the rate at which world 
electricity sources are transitioning from fossil 
fuel to renewal energy must further increase for 
the world to ward off disastrous levels of global 
warming [2]. For PV to do its part, terawatt levels 
of production will soon be required, and advanced 
manufacturing concepts must therefore be 
successfully implemented to support these new 
volumes of production.

The Industry 4.0 framework, which originated 
in 2011, outlines a number of timely and important 
concepts that address the need for greater levels of 
digitization and data analytics as manufacturing 
continues to scale up. One of these important 
concepts is the digital twin, a near-real-time 
digital image of a physical object or process that 
helps optimize business performance [3]. When 
applied to solar cell manufacturing, a digital twin 
can be considered to be akin to solar cell device 
models and fabrication process simulations [4–5]. 
This opens up the field for analytical modelling, 
simulation and optimizations that converge to 
derive value from massive volumes of data, leading 
to significant improvements in cost and process 
efficiencies [5].

Just as the brain applies a cognitive model 
of the world on sensory data, a digital twin 
is effective only if it is fed a continuous, rich 
set of measurement data derived from the 
operation of manufacturing processes. In this 
context, recent trends in solar cell factories 
point towards an increasing richness of end-of-
line measurement data on the finished device, 
with electroluminescence (EL) and infrared (IR) 
imaging becoming standard, while the I–V tester 
has also gone through innovations that enable it 
to measure more than just the current–voltage 
characteristics [6–7]. One of the most exciting 
developments is the advent of I–V testers with 
monochromatic LED illumination that have 
tuneable spectra and therefore the capability 
of measuring a solar cell’s relative spectral 
response [7]. In the laboratory, current–voltage 
tracing and spectral response are standard and 
complementary solar cell measurement techniques 
[8], so their recent incorporation in production 
line measurement allows lab analysis methods to 
be adapted to high-volume data in the production 
line for the purposes of pin-pointing areas of 
manufacturing improvements. 

This paper explores the multivariate statistical 
information offered when both volume one-Sun 
I–V and spectral response data are available for 
large batches of passivated emitter, rear locally 
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contacted (PERC) solar cells that have undergone 
different variations in manufacturing processes. 
For added value, two spectral response techniques 
are compared: 1) the traditional contacted 
method, which is based on short-circuit current 
measurement; and 2) a contactless quantum 
efficiency (QE) method, which is based on open-
circuit luminescence emission measurement [9–10]. 
The two techniques are performed when the solar 
cell is exposed to monochromatic illumination. 
Both kinds of spectral response data are used in 
conjunction with one-Sun I–V data to perform 
intra-batch and inter-batch analysis.

Cell fabrication and tracking 
Four batches of PERC solar cells were fabricated in 
a volume manufacturing environment. Each batch 
took a different route through the path of process 
tools/chambers to create four experimental splits. 
Table 1 summarizes the differences in the process 
paths taken by the four batches.

In order to verify that the batches did follow 

the intended paths, a batch path-tracking system 
using QR code scans was implemented to record 
the check-in times, and specific process tool/
chambers used as the cassettes containing each 
batch were loaded for processing at each process 
step. The production facility operators were trained 
and instructed to perform the QR code scans using 
a handheld reader, which sent the batch QR code 
and process QR code scan pair to a server in real 
time. The server timestamped and logged these 
events in a path-tracking database. Other than 
logging the check-in events of the four batches, the 
server computer also consolidated the path data 
of all batches to give either a plant-wide view, or a 
tool-comparison view, in which the I–V parameters 
of batches moving through different tools could be 
compared.

The schematic of this path-tracking method 
is given in Fig. 1, which shows the mapping of 
the physical factory and tool space to the server 
database space, as presented on the manufacturing 
facility view screen. The corresponding process 
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Figure 1. Batch path-tracking system using QR code pairing to record the check-in time and process tool/chamber at each step.

Batch	 Description

1	 Baseline 

2	 Identical processing to batch 1, except for the type of furnace used for phosphorus diffusion

3	 Identical processing to batch 1, except for the quartz tube used for phosphorus diffusion

4	 Identical processing to batch 1, except for the tool used for rear passivation 

Table 1. Description of the four solar cell batches.
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steps in the two spaces are numbered. For 
illustrative purposes, Fig. 1 also shows an example 
case where the path information of a batch is 
recorded. The highlighted QR code readers denote 
QR code scans, and in the plant-wide view screen, 
the blue boxes denote the recorded process tool/
chambers that were used to process the batch.

I–V and spectral response 
measurement 
All four batches of solar cells were metallized 
in the same print line and flashed by the same 
xenon-lamp-equipped I–V tester sorter. For each 
batch, about 500 contiguous cells were extracted 
for offline testing. The test sequence consisted 
of standard one-Sun I–V testing using an LED-
based illumination, as well as the contacted and 
contactless implementations of spectral response 
measurements as described above and in Fig. 
2. The contacted technique is based on short-
circuit current measurement, and the contactless 
technique is based on open-circuit luminescence 
emission measurement. The contacted 
measurements are taken under monochromatic 
illumination at 395nm, 686nm, 799nm, 975nm and 
1,060nm, while the contactless measurements 
are taken under monochromatic illumination at 
390nm and 660nm.

Because the wavelengths of 686nm and 
660nm are very near constant spectral response 
per unit cell active area, the measurements at 
these wavelengths can be used to normalize 
the measurements at other wavelengths. This 
procedure, while optional for the contacted 
measurement, is necessary for contactless 
measurement in order to generate meaningful 
results [10]. 

The normalized spectral response at 395nm 

or 390nm is called the blue response. It is 
highly sensitive to the anti-reflection coating 
thickness and refractive index, and slightly so 
to emitter passivation quality and emitter bulk 
recombination. For the contacted spectral response 
measurement, the response at 975nm or 1,060nm is 
called the red response. It is also highly sensitive to 
the anti-reflection coating thickness, and slightly 
sensitive to the base diffusion length. 

Measurement results and discussion
Fig. 3 shows the blue response in contacted 
spectral measurement and contactless spectral 

Figure 2. (a) Contacted spectral response measurement, with current being measured under short-circuit conditions. (b) Contactless spectral 
response measurement, with luminescence intensity being measured under open-circuit conditions. Both are performed using monochromatic 
illumination. 

monochromatic light

Photo-
diodecontact 

rails solar 
cellsolar 

cell

monochromatic light

(a)		  (b)

Co
nt
ac
tle

ss
 b
lu
e 

Q
E 
(a
rb
 u
ni
t)

Co
nt
ac
te
d 
bl
ue

 
Q
E 
(a
rb
 u
ni
t)

Is
c
(n
or
m
al
ize

d)

Figure 3. Blue response in contacted spectral response and contactless response, and the 
one-Sun short-circuit current (Isc) for batch 4 measurement sequence.
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measurement, and the one-Sun short-circuit 
current (Isc) for batch 4, with the spatial cell 
ordering in the batch preserved. Clearly, in all three 
types of measurement, there is a periodic structure 
in the batch spatial sequence. In fact, this periodic 
structure is evident in all four cell batches, but 
for brevity only that of batch 4 is presented here. 
By using a correlation technique, it is found that 
the periodicity in the blue response is eight solar 
cells. Because this periodicity is observed only in 
Isc in the blue spectral response, one can conclude 
that the periodicity is related to a process tool that 
influences the anti-reflection coating refractive 
index, which is most likely the silicon nitride 
(SiNx) vacuum deposition tool.

Fig. 3 also shows that the contacted and 
contactless spectral response techniques produce 
similar results in the blue response. In fact, the 
correlation coefficients between the blue responses 

of the two techniques are r = 0.957, 0.832, 0.945 and 
0.963, for the four batches, respectively, which is 
excellent. This shows that, in practice, the cells’ 
blue response can be reliably obtained either by 
using the contacted spectral response method, 
preferably integrated in the I–V tester [8], or by 
using a contactless device situated at the end-of-
line position, close to the I–V tester.

Having identified and briefly discussed this 
periodicity in the blue spectral response, it is 
now desirable to investigate how it and other 
spectral response results relate to cell efficiency. 
Fig. 4 shows, within each batch, the scatter plots 
of efficiency versus the contacted blue spectral 
response and a base quality parameter (which is 
derived from the red response), each shown with 
the gradient direction. As expected, in each case 
the efficiency trends positively with both the blue 
response and the base quality parameter. 

Examination and use of the blue response can 
be a significant factor in improving finished cell 
efficiency and therefore production line yield. 
Observe from Fig. 4 that each batch has a bimodal 
distribution: a high blue response mode and a low 
blue response mode. The differences in median 
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Figure 4. Intra-batch scatter plots of efficiency versus the contacted blue response and base quality parameter (derived from the IR response), each 
shown with the gradient direction. 

“Examination and use of the blue response can be a 
significant factor in improving finished cell efficiency 
and therefore production line yield.”
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efficiencies between these two modes are 0.02%, 
0.02%, 0.04%, 0.07% absolute efficiency points for 
batches 1 to 4 respectively. These differences are 
sufficiently significant to make it worthwhile to 
investigate, and, if possible, reduce or eliminate the 
SiNx vacuum deposition tool inhomogeneity as a 
way to reduce the variance and possibly increase the 
mean of the finished cell efficiency distribution. 

Additionally, it turns out that the base quality 
parameter explains an even more significant 
part of the total variance in efficiency. There is 
evidently an improvement in the base quality 
parameter for batch 4, which was subjected 
to a different rear-passivation recipe to that 
of batch 1. This improvement in base quality 
parameter largely explains the difference in the 
two batches’ efficiencies. Thus, using the base 
quality parameter to interpret experimental 
splits – where the intended change is in the rear 
passivation – can lead to clearer conclusions, more 
accurate attribution of efficiency changes to the 
control variable, and potentially more efficient 
experiments that require fewer samples.

More inter-batch analysis can be carried out 
by plotting all four batches together in a set 

of two-variable plots. Fig. 5 shows four inter-
batch trends of contactless blue response versus, 
respectively, short-circuit current (Isc), fill factor 
(FF), open-circuit voltage (Voc) and efficiency. 
Batches 1 and 4 (which differ only by their rear-
passivation processing) have a nearly identical blue 
response and Isc, while batches 2 and 3 (which were 
processed in a different type of diffusion furnace 
and in a different diffusion tube compared with 
batch 1, respectively) have distinctly different 
blue responses and slightly different short-circuit 
currents. Thus, the contactless blue response could 
be a parameter that is more sensitive to changes in 
emitter profile compared with I–V parameters, as 
evident in its ability to differentiate batches that 
have different emitter processing. 

There is also a negative trend between the blue 
response and the fill factor among the batches. 
This trend makes sense if it is posited that emitters 
with higher surface concentration have higher 
Auger and surface recombination, and therefore 
lower blue response, while at the same time 
forming lower-resistance contacts with the screen-
print metal lines, thus leading to a higher fill 
factor. A long-term inter-batch study of this trend 
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could aid emitter profile optimization by diffusion 
furnace process tuning.

Digital twin
As mentioned in the introduction, a digital twin 
for the solar cell manufacturing process can be 
considered to be akin to solar cell device models 
and fabrication process simulations. Indeed, in this 
work, as the starting point for the device model 
part of a digital twin, a detailed solar cell physics 
model created in Griddler was used, which is a 
finite-element model and simulation program for 
solar cells [11–12]. Griddler accepts as inputs various 
detailed cell parameters, such as emitter dopant 
profile, anti-reflection coating thickness and its 
refractive index, and rear-passivation quality 
(defined by the surface recombination velocity), 
and calculates both the one-Sun I–V and spectral 
response. As shown in Fig. 6, a physics-based 

device model was constructed in Griddler, using 
cell parameters typical of a PERC cell that would 
yield similar I–V parameters to those of the median 
solar cell in the production line batches described 
earlier. 

While the Griddler model is useful for device 
design work – metallization pattern optimization, 
modelling the influence of material quality, 
evaluation of new diffusion recipes, and so on – it 
cannot interpret production line measurements 
in real time. Such real-time interpretation is 
necessary for continuous manufacturing-yield 
optimization and troubleshooting, unlike during 
device design. Indeed, as mentioned in Zimmer 
et al. [4], one of the most important points in 
modelling is to find the right balance between 
pragmatism and scientific rigour, as the latter may 
consume unnecessary computing power and render 
real-time processing infeasible.
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Figure 7. Yield-oriented model for variations in PERC cell fabrication. The model accepts as inputs the statistical distributions of the cell properties, 
and outputs the statistical distributions of the I–V and spectral response parameters (the latter is not shown in this figure).
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In order to render the Griddler device model 
suitable for employment as a digital twin, good use 
is made of the fact that the digital twin is intended 
for the interpretation of statistical distributions 
in which the underlying material properties 
and finished cell parameters are not drastically 
different from the median for most of the time. 
Therefore, the focus will be on a simple statistical 
model that yields the same results as the Griddler 
model when all input properties are at median 

values, and which performs well at predicting the 
rates of change in measurement values that are 
caused by variations in those properties that are 
relevant to manufacturing yield.

The resulting model for the PERC cell accepts 
as inputs the statistical distributions of the cell 
properties, and outputs the statistical distributions 
of the I–V and spectral response parameters, as 
shown in Fig. 7. This model is characterized as 
yield oriented, because it includes the variances 
(distributions) of input properties and shows 
the resulting finished cell parameter variances 
(distributions).

While it is a straightforward matter to model 
I–V and spectral response results on the basis of a 
given set of cell properties and their variations, the 

I-V Parameters               Spectral Response Characteristics          Emitter Measurements
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Figure 9. Box plots of the various modelled measurement characteristics for the four cell batches, using the yield-oriented model. In addition to I–V 
and spectral response parameters, the emitter sheet resistance and surface concentration are also modelled. The ability of the model to predict these 
latter properties offers increased depth of analysis and enhanced diffusion process control options for production lines that have inline doped layer 
measurement tools.

“The resulting model for the PERC cell accepts 
as inputs the statistical distributions of the cell 
properties, and outputs the statistical distributions 
of the I–V and spectral response parameters.”
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accuracy of the inverse approach – finding a set of 
cell properties that give rise to specific observed 
finished cell parameters – is prone to severe 
degradations by measurement noise, confounding 
factors and model inaccuracies. The model for 
deriving these properties must be designed to seek 
solutions within a plausible range of possibilities 
by setting certain rules, bounds and constraints, 
the details of which are beyond the scope of 
this paper. This allows a digital twin to be used 
to interpret I–V and spectral response data in a 
practical manner. As an example, referring to the 
spectral response data plots in Fig. 4, the model 
interprets the bimodal nature of the blue response 
in each batch as arising from corresponding 
bimodal variations in the anti-reflection coating 
refractive index. Fig. 8 shows the resulting plots of 
the spectral responses for the four batches. 

Fig. 9 shows box plots of the various modelled 
I–V and spectral response parameters for 
the four cell batches, using the inverse yield-
oriented model. Notice that each batch has two 
distributions of cell parameters, each with a 
different median for the anti-reflection coating 
refractive index, in order to reproduce the bimodal 
nature in the blue response. In addition to I–V 
and spectral response parameters, the emitter 
sheet resistance and surface concentration are 
also modelled. These latter modelled properties 
are to illustrate – for production lines equipped 
with inline emitter layer measurement capabilities 
[13] – that certain doped layer measurements 
be interpreted together with end-of-line cell 
parameters to form a more conclusive picture of 
the underlying causes of variations seen on the 
production floor.

Summary and outlook
This study of volume manufacturing data using 
four solar cell batches demonstrates the usefulness 
of inline spectral response measurements in the 
production line. First, by attributing patterns seen 
in the I–V parameters to the blue response or 
the base quality properties (derived from the red 
response), one can quickly identify the fabrication 
processes and their variations that give rise to 
these patterns, and also assess the impact of the 
process variations on finished cell efficiency. The 
spectral response data is often more sensitive 
than I–V parameters to variations in fabrication 
processes, thus potentially aiding pre-emptive 
maintenance actions or diagnosis of issues in the 
production line. 

A suitably designed digital twin which 
combines the rigour of a physics model with the 
practicality of statistical models proves to be 
useful in performing real-time batch statistics 
interpretation. With a physics basis, the digital 
twin is sophisticated enough to consider a 
multitude of data, such as I–V and spectral 
response parameters, and possibly doped layer 

measurements in the future. With a statistical 
basis, it is built to handle high-volume, high-
throughput data typically encountered in a solar 
cell factory. One can envisage the digital twin 
being used for yield-improving purposes, such as:

1.	 What-if analysis, e.g. predicting the benefits of 
employing engineering process control to reduce 
a certain process-induced cell property variance.

2.	Root cause analysis to remedy and prevent out-
of-control events.

3.	An aide in experimental data interpretation in 
evolutionary operations to reduce the number 
of cells required in processing experimental 
batches.
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