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Professional photovoltaic plants 
today are virtually always 
monitored. Asset managers collect 

operational data from heterogeneous 
portfolios of plants. The data originates 
from on-site sensors and inverters. They 
are recorded by local dataloggers and 
sent to a central monitoring platform. 
Such platforms include a database, 
dashboards for supervision, operations 
and maintenance (O&M) and reporting 
purposes, analytical tools and data export 
functions.

3E operates the hardware-independ-
ent performance monitoring and 
reporting platform SynaptiQ. From the 
monitoring data of our customers we see 
that, on average, their PV plants perform 
as well as expected. SynaptiQ lets them 
continuously improve the plant avail-
ability and performance while streamlin-
ing their business processes. At the same 

time, performance ratios (PRs) are widely 
spread, even for plants from the same 
portfolio. Although monitored, many 
plants perform far below expectation 
(Figure 1). Obviously, these plants are not 
managed as well as they could be.

Monitoring is more than collecting 
data and aggregating them into contrac-
tual and financial key performance 
indicators (KPIs). Probably, the bottom 
tier plants in Figure 1 are followed by 
an operator and their KPIs are reported 
regularly. To the asset manager, their 
overall performance must look weak but 
not yet alarming. 

Performance monitoring allows O&M 
contractors to increase their business 
efficiency through fast fault detection 
and focus on actual faults and solutions. 
It serves asset managers to see what’s 
going on at the plant and device level 
and how fast their O&M partners inter-

vene. In case of component failure or 
module degradation, they can identify 
and prove causes for warranty claims.

Back in 2012, 3E launched an extensive 
programme to introduce automatic 
fault detection and diagnosis into its 
monitoring tools. Today 3E offers the PV 
Health Guard as a monthly or quarterly 
fault report to their SynaptiQ customers 
as well as a one-time Historical PV Health 
Scan, e.g., before the end of the warranty 
period or for plants changing ownership.

Approach
Asset managers can easily implement 
automatic fault detection and diagnosis 
functions themselves as a step of data 
post-processing. The data is exported 
from the monitoring database and 
can then be mined with spreadsheets, 
scripting tools or dedicated data mining 
packages. However, particularly for large 
portfolios, plants with many inverters or 
with string monitoring, this task becomes 
quite challenging due to the complexity 
of the underlying data structures as well 
as the sheer size of the data sets.

3E uses the Python programming 
language. The application programming 
interface (API) of SynaptiQ allows the user 
to directly query SynaptiQ’s monitoring 
and plant configuration databases with 
Python. The API can be made available to 
customers.

Automatic fault detection and diagno-
sis are common activities in the condition 
monitoring of industrial processes and 
machines. The energy conversion process 
we want to monitor is illustrated in 
Figure 2. The different measurements as 
indicated may be interpreted as external 
process variables. The PV Health Scan for 

Asset management |  The timely and skilful interpretation of performance data from the monitoring 
of operational PV power plants is vital to improving the management and thus profitability of those 
plants over their lifetime. Achim Woyte shows how data mining and artificial intelligence can serve 
the management of solar assets

Data mining for automatic fault 
detection and diagnosis from 
photovoltaic monitoring data

Figure 1: Actual performance ratio (PR) from monitoring versus expected PR based 
on plant specification and real weather data for 197 PV plants in Europe; the worst 
25% perform more than 8% below expectation; the dot size represents the size of the 
PV plant
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this process consists of the steps analysis, 
fault detection and diagnosis. Analysis 
allows the plant operation to be reviewed 
in detail but it does not include any 
evaluation or decision step. Fault detec-
tion tells us whether anything is wrong, 
what is wrong and where it is wrong. And 
diagnosis tells us why it is wrong and 
how we can solve it.

Analysis
We start the analysis step with a data 
integrity check, removing outliers and 
identifying periods of missing data. 
Local irradiance sensors are validated by 
comparing their measurements to satel-
lite-based irradiance. We then compute 
the high-level KPIs, performance ratio 
and energy-based availability for the PV 
plant and its individual arrays/inverters. 
In a second step, we compute the losses 
over the energy conversion chain for the 
plant and its arrays/inverters. We show 
how these loss components behave 
over time and whether they differ for 
the different arrays/inverters. If the plant 
contains string monitoring, the different 
loss components are also computed for 
each string.

Moreover, we review the correlation of 
measurements for the individual samples 
recorded. Finally, if the dataset contains 
several years of data, we also review the 
structural degradation over time.

In short, the analysis step largely relies 
on the detailed allocation of losses over 
the energy conversion chain, over the 
different instances of each component 
type (e.g., strings, arrays, inverters) and 
over time. It creates value for the user 
through the quantitative details and their 
visual presentation.

For the analysis, we build further on 
the conventions, guidelines and recom-
mended practices from IEC 61724 [1], the 
European Joint Research Centre in Ispra 
[2], the International Energy Agency’s 
Photovoltaic Power System Programme 
(IEA-PVPS) [3] and SolarPower Europe’s 
O&M Best Practice Guidelines [4].

Fault detection
Our approach to fault detection is model-
based: we compare the process variables 
as measured in the field to their expected 
reference values based on a model of the 
process. A simple and frequently used 
method to do this is limit checking of the 
measured variable. The measured value 
is compared to the reference value. If a 
certain range around the reference value 
is exceeded, this indicates a fault. 

For PV monitoring, evaluating the 
process variables directly as they have 
been measured over time is not very 
effective due to the often high noise. 
Instead, it is more promising to work 
with derived indicators that correspond 
to different parts of the process. These 
so-called features should be repre-
sentative for the underlying process and 
uncorrelated with each other. When a 
feature is evaluated positive, i.e., a thresh-
old is exceeded, we call this a symptom.

For the PV Health Scan we have devel-
oped several feature sets for different 
parts of the work flow. Features for the 
‘Data Integrity Check’ are the daytime 
recording fraction, i.e., the fraction of 
the monitoring period during daytime 
for which measurements have been 
recorded, and the fraction of outliers 
over the total number of measurements. 
For the ‘Solar Sensor Check’, we use 
features to check the clock setting, the 
sensor orientation and its calibration (see 
example in Table 1). For the ‘Performance 
and Loss Analysis’ on plant and compo-
nent level, we have defined features in 
line with the different loss components. 
For the ‘Degradation Analysis’ we use 
annual degradation rates.

The threshold values for the differ-
ent features can initially be set based 
on expert knowledge. A better way is to 
compute the feature sets for a sufficiently 
large sample of healthy plants and then 
chose, e.g., the P5 and P95 percentiles 
for each feature as thresholds. Finally, by 
applying fuzzy logics for decision making 
or machine learning based on classifica-
tion, it is possible to evaluate the features 
more gradually in line with their severity. 

This should contribute to improving the 
overall selectivity of the fault detection 
algorithm.

Diagnosis
While automatic analysis and fault detec-
tion are relatively straightforward, the 
diagnosis step is the most challenging. 
We look for a conclusion on the underly-
ing root cause through a comprehensive 
analysis of the different symptoms. In 
practice, we see that the symptoms 
from different parts of the workflow, 
e.g., Data Integrity Check, Solar Sensor 
Check, Performance and Loss Analysis 
and Degradation Analysis, complement 
each other. A human domain expert can 
synthesise these symptoms and draw 
a conclusion based on human experi-
ence. The challenge is to make the 
machine evaluate and synthesise from 
the symptoms and return a few probable 
suggestions on the root cause. 

Notably, the obvious analogy to the 
medical world is not solely semantic 
but also practical. A blood test returns a 
feature set consisting of concentrations 
of lipids, glucose, hormones, etc. If the 
reference range for any of these features 
is exceeded, this is flagged as being 
‘abnormal’. Medical imaging devices 
come with post-processing tools that 
check features like minimum thickness 
of a layer of tissue or optical density and 
raise a flag as well if the reference range 
is exceeded. Both tools perform a fault 
detection; however, the diagnosis is left 
to the physician.

We can apply different approaches to 
move from fault detection to diagnosis. 
‘Inference-based methods’ are suited 
if the link between root causes and 
symptoms can be expressed through a 
known set of logical rules, referred to as 
knowledge base. By means of the knowl-
edge base, a so-called inference engine 
can then compute the most probable 
root causes. In artificial intelligence, 
this kind of systems is commonly called 
‘expert systems’. Setting them up requires 
a realistic translation of domain expertise 
into the knowledge base, which easily 
becomes quite tedious.

‘Classification methods’ are suited if 
a sufficiently large empirical dataset is 
available for training. They are a family 
of machine learning methods. For the 
case of PV fault diagnosis, this would 
ideally be a set of monitoring data from 
many plants over several years along with 
detailed maintenance logs. Classification 

Figure 2: Energy flow in a grid-connected PV system; with 
measurements of plane-of-array irradiance (GPoA), DC voltage 
and current (VDC, IDC), AC power, voltage and power factor 
(PAC, VAC, PF), ambient and module temperature (Tamb, 
Tmod); yields (Y), losses (L) and performance ratio (PR)
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Economic impact
In line with the mean bias error as listed 
in Table 1, the sensor in this use case 
recorded 9.4% too little irradiation over 
the year. Accordingly, the performance 
ratio as computed with this reference 
yield is 10.6% too high. While the real 
PR for this year was a low 74%, the O&M 
contractor could report 82%. For the 
860kW plant built in 2011, this over-
optimistic performance evaluation hides 
a loss of €40 000 per year. With recurrent 
monthly sensor checks, this faulty calibra-
tion would have been detected after one 
month.

Use case 2: disconnected strings
Case description
After five years of operation, a 250kW 
rooftop plant in France was checked on 
behalf of a third-party investor. The plant 
contains three central inverters and no 
string monitoring. Amongst other things, 
a PV Health Scan revealed that, for one 
inverter, several strings had been discon-
nected for more than a year.

Fault detection and diagnosis
Figure 4 shows the high-level KPIs and 
losses per array/inverter. The overall PR of 
this plant for the study period of one year 
is low at 69%. The current-based losses 
are too high for all arrays/inverters, and 
especially for Inverter 1 with current-
based losses of 17.8%. Accordingly, 
threshold checking of the overall losses 
triggered a fault for this array; however, 

situated in the normal range, the observa-
tion is labelled ‘OK’. Where this is not the 
case, a symptom is triggered. Finally, a 
human expert verifies the textual descrip-
tion.

Of the three symptoms indicated in 
Table 1, the low value of ‘Sensor calibra-
tion: slope’ is the decisive one for the 
diagnosis. The sensor systematically 
shows 92.2% of the satellite-based irradi-
ance only. Accordingly, the linear regres-
sion line in Figure 3 approximates the real 
calibration of the sensor. Consequently, 
the measured irradiation over the period 
is 9.4% too low. This deviation may be due 
to severe soiling or bad calibration.

Moreover, a deviation in clock setting is 
observed. However, the clock setting error 
of -15 minutes is in the order of magni-
tude of the sampling period and does not 
disturb the measurement as such.

xxx

methods can be applied without explicit 
knowledge of the underlying causalities. 
However, the preparation of a meaningful 
training set can be quite tedious as well. 
For a practical overview of the advantag-
es and drawbacks of different machine 
learning algorithms, we recommend the 
documentation of the Python machine 
learning package scikit-learn [5].

Currently, 3E is exploring inference-
based as well as classification methods. 
Inference-based methods work well for 
simple causalities. For example, in Use 
Case 1 below, the slope of the sensor 
calibration is significantly too low. In this 
situation, the sensor should be cleaned 
or calibrated. Other common faults like 
near shading or a wrong orientation can 
be excluded since they would cause a 
different set of symptoms. This reasoning 
can easily be formulated in logical rules. 
For the example of Use Case 2, deciding 
whether a reduction in array current is 
due to a disconnected string, module 
degradation or inefficient maximum 
power point tracking is less straightfor-
ward. The symptoms for these faults are 
quite distinctive and a PV expert should 
be able to read them. Nevertheless, it 
looks much more promising to imple-
ment this intelligence through machine 
learning than through an explicit knowl-
edge base.

Both approaches are potentially very 
useful for fault diagnosis in PV. At the 
same time, their limitations become 
clear from the medical analogy. Artificial 
intelligence and data mining can point 
towards possible root causes; however, 
asset managers and O&M contractor 
will still rely on their domain experience 
and personal judgement for a long time. 
Automatic fault detection and diagnosis 
can simplify this work and help them to 
manage large and heterogeneous portfo-
lios much more efficiently.

Use case 1: radiation sensor 
calibration
Case description
A 860kW rooftop installation in Belgium 
returned an annual PR of 82% which 
appears to be a normal performance. 
A Solar Sensor Check was run for the 
on-site irradiance sensor over the annual 
data set from June 2015 to May 2016.

Fault detection and diagnosis
The Solar Sensor Check evaluates the 
fault illustrators (features) as listed in 
Table 1. Where the fault illustrators are 

Table 1. Example of fault illustrators (features) and diagnosis for a solar radiation sensor installed in 
Belgium, data from 1 June 2015 to 31 May 2016

Figure 3. Sensor irradiance versus satellite-based reference 
irradiance with linear and quadratic regression; the slope is 8% 
too low; 860 kW site in Belgium, data from 1 June 2015 (blue) 
to 31 May 2016 (green), orientation 30° south

Fault illustrator [unit] Fault illustrator value Observation

Data recording: 
plausibility of maximum 
irradiance

maximum Irradiance [W/
m^2]

1037 OK

Data recording: 
plausibility of minimum 
irradiance

minimum Irradiance [W/
m^2]

0 OK

Data recording: 
completeness

daytime recording 
fraction [%]

99.98 OK

Total irradiation Mean bias error [%] -9.4 Measured irradiation 
too low

Clock setting approximated time shift 
[min]

-15 Deviation in clock setting

Sensor orientation estimated azimuth & tilt 
[degree]

4°, 13° -> 6°, 13° OK

Sensor calibration: 
linearity

non-linear term 1.037 OK

Sensor calibration: offset sensor offset [W/m^2] -3.88 OK

Sensor calibration: slope sensor gain 0.922 Slope of calibration is 
too low
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it is insufficient to conclude on a root 
cause.

Figure 5 reveals that the conversion 
loss anomaly for current-based losses 
is almost constant over time. We can 
identify two distinctive events: on 11 
September 2015, the current losses 
for array/inverter 1 dropped by -5.5% 
below the others. On 27 October 2015, 
the losses dropped further to -11%. This 
situation persisted until the end of the 
study period.

Array/inverter 1 counts 18 strings of 
modules. Accordingly, a disconnection 
of one or two strings would lead to a 
systematic power loss of 5.5 and 11%, 
respectively. These distinct conversion 

loss anomaly values, together with their 
relatively sudden changes, point towards 
one or two disconnected strings at this 
array/inverter.

Economic impact
Obviously, in the given case the O&M 
contractor did not see these string faults. 
Their effect on the overall performance 
is quite small, namely 11% on an array/
inverter level and 3.7% on a plant level. 
Moreover, the O&M contractor did not 
act on the overall low performance of the 
plants. 

For the owner, only the string faults 
caused a loss of approximately €6,000 
per year. With recurrent monthly Health 

Scans, the string faults would have been 
detected and repaired after one month.

Outlook
Data mining and machine learning can 
boost the revenues from PV plant opera-
tion by up to 10% simply by making O&M 
more agile. Already today, readily avail-
able solutions for automatic analysis and 
fault detection can be plugged into the 
PV performance monitoring platforms. 

The step from fault detection to 
automatic diagnosis is still challenging. 
The machine can suggest probable root 
causes for common faults and formu-
late recommendations. However, for 
the final interpretation and formulation 
of remediation actions, we still rely on 
human experts for now. 
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Figure 4. Performance losses split into loss types and stacked for each array/inverter 
and the entire plant, sorted in ascending order; particularly the current-based losses 
(green) are generally too high and worst of all for array/inverter 1; the losses are 
normalised to the reference yield. Data from 1 July 2015 to 30 June 2016

Figure 5. Conversion loss anomaly for current-based array losses per day, compar-
ing the conversion losses of all arrays/inverters to the best in class of each day. The 
blue line shows the reference yield and hence the available irradiation for each day. 
Starting on 11 September 2015, the losses for inverter 1 (red) are much higher than 
for the others


