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ABSTRACT

This paper focuses on the technical progress of high-efficiency crystalline silicon solar cells and modules,
specifically with regard to passivated emitter and rear cell (PERC) processes, module description and light-
induced degradation (LID) data. Through appropriate optimizations of the solar cell and module processes,
the cell efficiency achieved in mass production is 21.3%, with module power exceeding 300W. To solve the LID
problem, hydrogenation technology developed by UNSW is used, bringing the cell LID rate down to below 1%.

Introduction

The passivated emitter and rear cell
(PERC) concept was developed at
the University of New South Wales
(UNSW) over 25 years ago [1]. There
are complications, however, when
transferring the laboratory PERC solar
cell process sequence to an industrial
manufacturing setting. The focus will
therefore be on simplifying the process
sequence for industrial implementation,
but aiming to obtain the same solar
cell conversion efficiency as in the
laboratory. In the manufacture of PERC
solar cells, plasma-enhanced chemical
vapour deposition (PECVD) is used
to form the passivation layer, and laser
opening contact is employed on the back
surface. At the same time, integrated
module technologies are used in order to
achieve high module power.

The boron-oxygen (B—O) defect is a
major concern to the PV community:
it can reduce the efficiency of p-type
Czochralski (Cz) silicon PERC solar
cells by up to 2%,,, compared with
the efficiency measured at the end
of fabrication. In order to reduce the
light-induced degradation (LID) of Cz
PERC cells, hydrogenation technology
developed by UNSW is used in
Suntech’s production line.

Solar cells

Commercial-grade boron-doped Cz
p-type silicon wafers are used in the
development of PERC solar cells at
Suntech; the Cz-Si wafer specification
is resistivity 1-3Q-cm, thickness
200um and size 156mm x 156mm.
Solar cells are fabricated using the
PERC processing sequence, as shown
in Fig. 1. Prior to the deposition of the
dielectric passivation layers, wafers
are saw-damage etched and surface
textured by KOH solution, followed by
HCI/HF cleaning, phosphorus diffusion
and edge etching. The sheet resistance
of the emitter is ~90Q/sq. An AlO,

layer is deposited using standard
Roth&Rau remote microwave PECVD
systems, and SiN, layers are deposited
using Centrotherm direct PECVD
systems. The hydrogenation process
takes place after printing and firing.

“To improve solar cell
efficiency, the diffusion and
screen-printing processes are

optimized.”

To improve solar cell efficiency, the
diffusion and screen-printing processes
are optimized once the PERC solar cell
process sequence has been confirmed.
An optimization of the diffusion
process is first performed in order to
obtain a low surface concentration and
a deep junction depth. The best result
achieved is a surface concentration
of 2x10%°/cm?, with a corresponding
junction depth of 0.4um. The efficiency
can be increased by 0.15%,,; this
increase can be attributed to the
improvement in quantum efficiency
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Figure 1. Process sequence for PERC solar cells.
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(QE) at short wavelengths. The QE
curve after the diffusion optimization is
shown in Fig. 2.

The laser process, the selection of
the Al paste, and the firing process
are three of the most critical aspects
of PERC production. The line width
resulting from the laser opening, the
number of lines, and the depth of the
local back-surface field (LBSF) all
influence the open-circuit voltage (V,.),
series resistance and fill factor (FF). The
width and number of laser lines can be
synthetically regarded as the surface
proportion of the laser opening; on the
basis of a series of experiments, the
optimized opening proportion should
be around 5.5%. In order to yield a
satisfactory filling of the Al paste,
the width of the lines is controlled
to around 50um. A deeper LBSF can
exhibit a higher V. and FF; the depth
of the LBSF is over 5um as a result of
improving the Al paste and firing
process. Figs. 3 and 4 show the profile
of the laser opening line and a scanning
electron microscope (SEM) image of the
LBSF respectively.

When all the above-mentioned
optimized conditions are incorporated,
the daily average efficiency achieved
in mass production is over 21%. A
cell selected from Suntech’s PERC
mass production line, not from the
laboratory, yielded a maximum
efficiency of 21.31% (Fig. 5), as
documented in the measurement report
from China PV Test Center (CPVT).

Solar cell LID

The properties and interactions
of hydrogen in silicon have been
extensively studied over many decades,
with the beneficial effects shown as
early as 1976 [2]. The use of hydrogen-
containing anti-reflection coatings
(such as PECVD SiN), particularly
in the fabrication of multicrystalline
silicon solar cells, is essential for
bulk and surface passivation [3].
For monocrystalline silicon, recent
studies have shown that hydrogen
plays a critical role in the permanent
deactivation of B-O complexes [4-5].

Hydrogen has been shown to
be highly reactive, with the ability
to interact with the silicon lattice
and with virtually all impurities
and defects within the silicon [6].
Subsequently, hydrogen passivation
has been demonstrated to allow
substantial improvements to the
electrical performance of silicon
solar cells through the deactivation
of recombination activity associated
with a wide array of structural- and
impurity-related defects in these cells
(3,4,7,8].
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Figure 2. QE curve before and after optimization of the diffusion process.

Figure 4. SEM image of the LBSF.
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Figure 5. Cell test report from CPVT for Suntech’s PERC mass production line.
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Figure 6. Effects of hydrogenation (light-soaking conditions: Xe lamp, 1kW, 5h

Hydrogen is a ‘negative-U’ impurity
in silicon with the ability to assume
different charge states, taking on a
positive (H*), neutral (H°) or negative
(H") charge state [9]. The charge
states of the interstitial hydrogen have
important implications for both the
diffusivity and the ability to interact
with defects and impurities within the
silicon [9]. For example, deep-level
monovalent defects in crystalline silicon
solar cells, including interstitial iron
(Fe*), interstitial chromium (Cr;*) and
the B—O* complex, have been reported
to need H- for defect passivation [9].

The effects of hydrogenation are
shown in Fig. 6: hydrogenation yields
a stable increase in efficiency of
0.1%,,,, with only a 0.55%,,, efficiency
decrease after light soaking. Without
hydrogenation, after light soaking there
is a 3.41%,,; degradation in efficiency.

“Hydrogenation yields a
stable increase in efficiency
of 0.1%,,,, with only a 0.55%,,,
efficiency decrease after light

soaking.”

Undoubtedly, a number of B-O
complexes are formed during cell
fabrication; these are induced by hot
carriers, since several high-temperature
processes exist. The initial efficiency is
limited by these B—-O complexes, but
hydrogen gives a perfect passivation in
the bulk of the wafers, and increases
the efficiency. The lifetime scanning
maps of the cells before and after
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Figure 7. Lifetime scanning map before and after hydrogenation.
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hydrogenation are shown in Fig. 7;
hydrogenation results in a significant
increase in lifetime, and generates an
increase in cell efficiency.

Fig. 8 shows the daily average
efficiency recorded for Suntech’s PERC
mass production line. It is clear that the
efficiency increase after hydrogenation o1 250

is stable in actual cell production.
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stability of the hydrogenation process; Fig.
9 shows the process to be perfectly stable.
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As noted earlier, the optimization of
the diffusion improves the quantum
efficiency at short wavelengths; a high-
transmittivity of EVA and glass at short
wavelengths is therefore required in
order to benefit from cell improvements.
In addition, at long wavelengths PERC
cells demonstrate a higher response than
standard-structure Al-BSF cells; thus, in D80%
order to carry through this advantage
of PERC cells, EVA and glass with high
transmittivity at long wavelengths are

D60%

also necessary.

New types of EVA and glass have 050%
been chosen, with transmittivity curves
as shown in Figs. 10 and 11. 0.40%

When all optimizations are
incorporated, the output power of the 030
PERC modules increases by over 5W,

- - 0.20%
with an average daily output power
of 295.8W. The power distribution i I I I
of Suntech’s PERC modules in
December 2016 is shown in Fig. 12; the 0.00%

measurement report from CPVT notes Time (H)
a maximum power of 303.4W (Fig. 13). L

Outdoor module LID measurements Figure 9. Long-duration light-soaking performance after hydrogenation.
have also been carried out. After two
months’ light soaking (summer 2016,

Figure 8. Comparison of data over 10 days for mass production without and

with the use of hydrogenation.
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July and August, in Wuxi, China), the T
degradation in module power is only
2%, (Table 1). The electroluminescence \
(EL) images show very little change after g |
this long period of light soaking (Fig. 14).
All the cells therefore demonstrate stable N
performance in an outdoor environment. L s |
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power exceeding 300W in a ——

number of cases.”

Figure 10. Transmittivity curve of the new type of EVA used for PERC module

production.
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Conclusions

9% This paper has focused on the
technical progress of high-efficiency
crystalline silicon solar cells and
modules, specifically the PERC solar
cell process, module description and
LID data. As a result of optimizing
the diffusion, laser opening, Al
93 paste selection and firing, as well as
——new glass improving the passivation layers, the

daily average efficiency of cells in mass
production was improved to more than
21%. A major general concern in the
PV domain, light-induced degradation
is especially serious in the case of
a ‘ high-efficiency PERC cells; however,
PV 00 500 00 700 300 %00 1000 1100 hydrogenation can completely
Modules Wavalength{nm) overcome the issue of LID in .Cells.
In Suntech’s PERC production line, a

. o .
Figure 11. Transmittivity curve of the new type of glass used for PERC gain of 0.1%yy, efflqency was observed
module production. after hydrogenation; moreover, an

efficiency decrease of less than 1%,

was recorded after light soaking (Xe
lamp, 1kW, 5h @ 45°C).

In respect of modules, the
daily average output power of the
mass production PERC module,
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ETDiR incorporating high-transmittivity
o EVA and glass, was 295.8W, with the
power exceeding 300W in a number
e of cases.
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After 39.13 9.28 282.22 32.03 8.81 77.77
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