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Relevance and possibilities 
for a quality rating

The electrical quality of the wafer 
material has considerable impact on 
the achievable cell efficiency. Especially 
for passivated emitter and rear cells 
(PERC), solar cell efficiency is less 
limited by the surface recombination 
on the rear side, compared with solar 
cells with an aluminium back-surface 
field (Al-BSF); thus other factors gain 
importance. The quality of PERC 
solar cells is more sensitive to bulk 
recombination and hence to variations 
in the material quality. Since PERC 
cells  are progressively replacing 
Al-BSF solar cells in mass production, 
an improved material quality and a 
reliable material selection are essential. 

Recent developments of feedstock 
and the crystallization process have 
led to an improved class of material, 
the so-called ‘high-performance’ 
mu l t i c r y s t a l l i n e  ( H PM )  S i  [ 1 ] . 
Despite large differences in the price 
and quality of wafer materials, no 
specification in terms of the electrical 
material quality has yet been verified 
and established. The focus of this work 
is a reproducible quality description 

of standard and HPM wafers based 
on photoluminescence (PL) imaging 
techniques [2].

“The establishment of a 
defect description requires 
a meaningful quantification 

of crystal defects and an 
evaluation of the rating 

capability for a broad set of 
materials.”

Feedstock and the crystallization 
process determine the types and 
distributions of defects. The quality 
of the feedstock can be quantified by 
the impurity grade of the granules. A 
more challenging task, however, is the 
characterization of material defects 
which form during the crystallization 
process and reduce charge-carrier 
lifetime. On the one hand, impurities 
from the coated crystallization crucible 
diffuse into the crystallized ingot; this 
leads to edge regions with increased 
metal contamination (e.g. Schubert et 

al. [3] and Schindler et al. [4]). On the 
other hand, structural defects, such 
as grain boundaries and dislocations, 
form during the growth process . 
The novel concept of HPM reduces 
the generation and multiplication 
of dislocations. The different types 
of defect distribution have to be 
considered in a wafer rating.

PL imaging [2] already allows these 
structural defects and contaminated 
regions to be measured inline at the 
as-cut stage [5]. This technique’s 
applicability is evaluated in the ISE 
approach for a wide range of wafer 
and solar cell data from different 
manufacturers and crystallization 
processes. Physically relevant defect 
features are quantified by means of 
image-processing techniques to form 
the basis of a wafer characterization. 
T h e  p r e s e n t e d  d e t e c t i o n  a n d 
quantification of crystal defects allows 
a more detailed wafer description 
than currently available approaches 
in industry. The classification itself is 
based on machine-learning techniques. 
For this purpose, a regression model 
is trained in order to predict the 
expected solar cell quality.

The establishment of  a  defect 
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ABSTRACT
With the transition of the cell structure from aluminium back-surface field (Al-BSF) to passivated emitter 
and rear cell (PERC), the efficiency of multicrystalline silicon (mc-Si) solar cells becomes more and more 
sensitive to variations in electrical material quality. Moreover, the variety of multicrystalline materials 
has increased with the introduction of high-performance multicrystalline (HPM) silicon. For these 
reasons, a reliable and verifiable assessment of the electrical material quality of multicrystalline wafers 
gains importance: to this end, a rating procedure based on photoluminescence (PL) imaging has been 
developed. The material quality is characterized by the distribution of crystallization-related defects, 
which are successfully correlated with the solar cell quality of PERC and Al-BSF solar cells. The applied 
image-processing and machine-learning techniques are outstandingly good because of their robustness, 
transparency and precision. This is demonstrated by an evaluation of the approach using a large database of 
wafers and cells from 72 bricks from nine different wafer manufacturers, which represent a broad spectrum 
of currently available materials. The quality prediction leads to mean absolute prediction errors of 2.2mV 
and 2.9mV for Al-BSF and PERC solar cells respectively, in a true blind test. The proposed wafer rating is 
of benefit to both wafer and cell manufacturers, and can be established during the pre-delivery inspection 
in wafer production, and the incoming inspection in solar cell production. While wafer manufacturers can 
improve material quality as a result of an immediate quality feedback after wafering, cell manufacturers can 
improve production yield because of an appropriate wafer selection. 
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description requires a meaningful 
quantif ication of  cr ystal  defects 
and an evaluation of  the rating 
capability for a broad set of materials, 
including material from unknown 
manufacturers, which was not part 
of the training data for the model. 
This level of distinction was first 
encountered by Demant et al. [6] and is 
presented in this paper.

Existing approaches for 
quality rating
Structural defects and impurities lead 
to an increased recombination of 
charge carriers at the defect location; 
these recombination-active defects 
become visible in PL images through 
a  re duce d luminescence  s ignal . 
Alternative methods for l i fetime 
measurement are, for example, the 
quasi-steady-state photoconductance 
(QSSPC) approach [7], which averages 
the  carr ier  l i fe t ime over  larger 
areas, and the microwave-detected 
photoconductance approach (MDP) 
[8], which allows spatially resolved 
lifetime maps. The focus in this paper 
will be on PL imaging , since the 
method permits a quick investigation 
of defect structures, with the highest 
spatial resolution in the range of 
160µm/pixel. Commercial inline PL 
systems with megapixel resolution 
have been reported (e.g. Chunduri [9]).

On surface-passivated samples, the 
measured PL intensity directly reflects 
the electrical quality of the wafer bulk 
(e.g. Michl et al. [10]). Although the 
measured PL intensity of an as-cut 
wafer does not directly reflect the 
electrical quality of the wafer bulk, the 
geometrical structure of the structural 
defects present is already completely 
v i s ib le  at  the  a s -cut  s tage .  PL 
measurements are therefore well suited 
to a 100% inline control at the as-cut 
stage. Four representative samples 
with different defect signatures, along 
with the corresponding solar cell 
efficiencies, are illustrated in Fig. 1.

The defect structures determined in 
PL images of as-cut wafers correlate 
with solar cell performance [5,11,12]. 
Features for assessing material quality 
have been included in multivariate 
rating models [13–15]. This paper 
describes a multivariate, feature-
based predict ion approach that 
was published in greater detail by 
Demant et al. [6]. The richness of the 
underlying data set surpasses all recent 
investigations in this field. The data 
set allows different levels of difficulty 
in classification to be distinguished; in 
particular, the prediction of unknown 
manufacturers is necessary for a sound 
rating model created on the basis of a 

powerful multivariate data analysis.
The impact of defect features on 

solar cell performance also shows a 
direct dependency on the solar cell 
process, for example via gettering during 
emitter diffusion [16]. Different types of 
structural defect have been distinguished 
in terms of their appearance and 
development during the cell process 
[17,18]. The local density of these 
structural defects may be connected 
to the development of different defect 
types [19]. In the approach presented 
in this paper, the issue is addressed by a 
quantification of the local defect density 
which is used to describe the wafer 
characteristics. Moreover, crystal defects 
inside and outside the contaminated 
regions are distinguished within the ISE 
approach, as a beneficial effect of crystal 
defects on the gettering behaviour in the 
contaminated regions has been shown 
by Bentzen & Holt [20]. The relevance 
of these features can be observed with 
the proposed classification model via 
a regularized form of multivariate 
regression.

Novel machine-learning-
based approach for quality 
rating

Overview
The principal goal is to establish a 
prediction model to forecast the solar 
cell quality from PL images of as-cut 
wafers, and to identify the most relevant 
features for devising a rating of the 
material quality. The target parameter 
of the rating model is the open-circuit 
voltage Voc, which strongly correlates 
with material quality and is quite robust 
with respect to process variations. The 
rating model is outlined in Fig. 2 and 
comprises the following steps:

1.  Incoming control: the wafer first 
passes an incoming control with inline 
PL imaging.

2.  Feature extraction: special image-
processing techniques are applied in 
order to detect crystal defects, despite 
variations in contrast.

Figure 1. PL images of different bricks and brick positions, along with the 
conversion efficiencies of PERC cells manufactured from those wafers.

Figure 2. Overview of the presented approach for the development of the 
rating scheme.
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3. Wafer description:  the defects 
are quantif ied within a defect 
characterization to describe the wafer.

4. Prediction model: the rating scheme 
is trained to predict the solar cell quality 
on the basis of the empirical data of 
the as-cut measurements and the 
corresponding cell performances. It is 

essential to evaluate the quality of the 
model for unknown data.

5. Feature relevance: the prediction model 
enables the relevance of the features to 
be analysed; therefore, differences in the 
solar cell processes can be compared, and 
a deeper understanding can be gained by 
means of reference measurements.

Extraction of PL image features
Crystal defects and contaminated 
regions
The most important defect features are 
structural defects, such as dislocations 
and grain boundaries, which appear as 
dark, blurred line structures. Wafers with 
in-diffused impurities from the coated 
crystallization crucible exhibit large-
area contaminated regions with reduced 
average PL intensities, which mostly 
appear on wafers from the top or bottom 
of the brick or on wafers taken from the 
edge or the corner bricks of an ingot.

As depicted in Fig. 3(a), the crystal 
defects appear as light structures 
within the contaminated regions; 
this reflects the gettering effect of the 
crystal defects in these regions. To 
allow a quantification of all structural 
defects, the structures of the PL images 
are extracted, as shown in Fig. 3(b). 
In a second step, all crystal defects 
are quantified according to the phase 
congruency model of edge detection 
[21], which leads to a contrast-invariant 
localization of crystal defects, shown in 
Fig. 3(c). The first defect feature, Feature 
1, equals the area fraction of crystal 
defects (see Fig. 3(c)). 

Since crystal defects are slightly blurred 
in the PL images, the defect structures 
are thinned. The second defect feature, 
Feature 2, quantifies the area fraction of 

Figure 3. (a) PL image of a wafer from a corner brick. (b) The extracted 
structures after preprocessing. (c) Crystal defects detected using the 
ISE approach. Crystal defects within the contaminated regions are also 
extracted.

(a)  PL image of as-cut  
wafer

(b)  Preprocessing: 
Structure

(c) PL Features 1 and 3

Figure 4. Appearance of crystal defects in a HPM Si wafer (top row) and a regular mc-Si wafer (bottom row). (a) 
PL images taken at the as-cut stage. (b) Extracted defects. (c) Corresponding local defect densities, revealing a 
difference between the materials – the HPM wafer (top) contains equally distributed defects, whereas the standard 
mc-Si wafer (bottom) contains dense dislocation clusters, as well as defect-free regions. These differences are 
quantified in the four parameters of the area fraction: no, low, medium and high local defect density. (d) The j0 
images of the solar cells are in good agreement with the features observed in the as-cut stage.

(a) PL image of as-cut wafer (b)  PL Feature 2: Extracted 
defects

(c)  PL Features 6–9: Defect 
densities

(d) j0 image of solar cell
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thinned crystal defects (see Fig. 4(b)). 
The area fraction of the contaminated 
region, Feature 3, is also added to the ISE 
wafer description (see Fig. 3(c)); this is 
computed using basic image-processing 
techniques. The information about 
the contaminated regions allows the 
quantification of crystal defects in regions 
with low lifetime due to the contaminant’s 
in-diffusion from the crucible (Feature 
4), and distinguishes them from crystal 
defects within non-contaminated wafer 
areas (Feature 5). The differentiation is 
beneficial because defect clusters may act 
as gettering sites within contaminated 
regions [20]. To the best of the authors’ 
knowledge, these features are not 
detected in most industrial algorithms, 
which frequently consider only two or 
three features.

Distribution of crystal defects and 
intensities
The distribution of crystal defects 
throughout the wafer plane also 
influences the solar cell quality, as 
simulated by Isenberg et al. [22]. These 
material differences are quantified by 
computing local defect densities by a 
Gaussian averaging. Regions with no, 
low, medium and high (Features 6 to 9; 
see Fig. 4(c)) local defect densities are 
distinguished.

Wi t h  H P M ,  c r y s t a l l i z a t i o n 
dislocations are avoided because of 
a large quantity of small grains with 
random grain boundaries. Regions 
of low defect densities are therefore 
observed in HPM wafers, whereas a 
large number of dense crystal defects, 
mostly dislocations, can be observed 
in standard mc-Si wafers, as shown in 
Fig. 4. The correlation of defect regions 
of medium or high dislocation density 
with the corresponding image region 
of the dark-saturation current density 
(j0 images) confirms the relevance of 
these features. In addition, structural 
defect densities in contaminated regions 
and non-contaminated regions are 
quantified separately and added to the 
set of features (Features 10 to 17).

Further features are the average 
PL intensity (Feature 18), the doping 
normalized PL intensity (Feature 19), 
and the area fractions of regions with 
increasing levels of average PL intensity 
(Features 20 to 24; see Fig. 5). Finally, 
whether the wafer originates from the 
top/bottom region of the brick and 
shows completely inverted PL contrasts 
(Feature 25) is analysed.

Regression models
A challenge in multivariate data analysis is 
avoiding models that over-fit the training 
data and lead to a poor prediction quality 
of unknown samples. On the other hand, 
models of very low complexity may 

not be capable of describing complex 
relationships, which leads to a bias in 
the data. The optimum model can be 
identified within a model-selection step 
using a validation set of data. According 
to Occam’s razor, a simple prediction 
model should be preferred to more 
complex models, provided it can explain 
the given relationship. Three models 
with different model complexities were 
therefore analysed.

“A challenge in multivariate 
data analysis is avoiding 
models that over-fit the 

training data and lead to a 
poor prediction quality of 

unknown samples.”
The first method is a support vector 

regression (SVR): this is a supervised 
machine-learning technique, which 
can predict non-linear relationships. 
A regression model is trained to rate 
an input feature vector  

according to a quality parameter y. The 
algorithm primarily learns the mapping 
from features to the output (open-circuit 
voltage) from training data. Vapnik’s ε-SV 
regression model [23] is trained with a 
radial basis kernel. The meta-parameters 
ε and c are determined via a grid search 
on a validation subset of the data.

Second, a multilinear prediction 
model is used to predict the solar 
cell quality yi on the basis of the set of 
features xi,j, with j  {0,…, p} for sample 
i  {0,…, n}. More precisely, the goal is 
to determine the coefficients βk with  
k  {0,…, p} that minimize the prediction 
error for the training set with n elements 
according to

(1)

At this stage, Occam’s razor is 
followed by applying a regularized 
form of regression – the elastic-
net algorithm [24]. The number of 
coefficients is penalized according 
to a penalty function  with a 
regularization term λ; with a lower 
value of λ a more complex model is 

Figure 5. Examples of (a) PL images and (b) corresponding local average 
PL intensities of wafers from an HPM crystallization (top row) and a 
regular multicrystalline crystallization (bottom row). The local average PL 
intensities are quantified in the five parameters of the area fraction: very 
low, low, medium, high and very high average PL intensity.

(a) PL image of as-cut wafer (b)  PL Features 20–24: Avg. PL 
intensities
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allowed. The penalty function can be 
the  norm  or the  norm 

 or a value in between, as 
proposed in the elastic-net approach. In 
the last two cases, fewer active features 
are preferred to solutions with many 
active features. The most robust model 
is identified within the model selection 
step. Finally, the predicted solar cell 
quality  is given by .

The third method is a simple two-
feature approach. The two features 
quantify dislocation clusters xclust 
and the area of contaminated regions 
xcont; these are extracted on the basis 
of morphological operations. The 
calculation of the expected quality  is 
based on the maximum expected solar 
cell quality qmax, where qmax = Voc,max, 
according to

(2)

with coefficients βclust, βcont and βfix. 
The parameter β f ix describes an 
expected positive gettering effect on 
contaminated edge regions, similar to 
the approach of Birkmann et al. [12].

Experimental approach for 
the qualification of a wafer 
rating
Materials and experimental approach
A large set of about 7,500 wafers from 
nine manufacturers was investigated 
us ing two di f ferent  pro duct ion 
processes, as shown in Fig. 6. Most 

of the material (7,000 wafers) was 
selected from wafer sets with known 
ingot and brick positions provided 
by nine different manufacturers. To 
create a wafer set which represents 
the full spectrum of possible defect 
constel lat ions ,  the  wafers  were 
systematically sampled from different 
brick positions of 72 bricks, the bricks 
being selected from 16 ingots from 
different ingot positions within the 
crystallization crucible. Additional 
material was sampled from 27 boxes 
from two manufacturers.

In the as-cut state, all wafers were 
subjected to an initial  incoming 
control using commercially available 
in l ine  me a surement  e quipment 
(including conductivity and thickness 
mea surement s  and micro-crack 
detection) and an inline PL system. The 
rating model is developed using this 
comprehensive data set, collected in the 
incoming control operation. 

The wafer material was split into 
two sets for use in two different solar 
cell processes, one with 6,450 wafers 
and one with 1,050 wafers, The batch 
with 6,450 wafers was used to fabricate 
PERC solar cells in an industrial cell 
production line; the other batch, with 
1,050 wafers, was used to create Al-BSF 
solar cells with screen-printed and fired, 
Ag and Al front- and rear-side metal 
contacts in the PV-TEC research line 
[25]. In both cases, neighbouring wafers 
were processed to ensure comparability 
o f  th e  r a t i n g .  Fu r th e r m o re ,  a 
representative subset of 47 bricks was 

selected for the smaller batch (the 
Al-BSF process) from all 72 bricks 
considered within the PERC process.

The two material classes HPM and 
mc-Si were distinguished qualitatively 
according to their grain structure. 
In the outgoing quality  control 
operation, the current–voltage (I–V) 
characteristics were measured under 
standard test conditions. To allow a 
spatially resolved analysis of the defect 
structure in the final cells, the images 
of the dark-saturation current density 
j0 were generated for selected samples 
by C-DCR imaging accordant with 
Glatthaar et al. [26].

Evaluation set-up
A set of characteristic PL features 
is extracted using the data of the 
i n co m i n g  co nt ro l .  Th e  d o p i n g 
concentration (Feature 26), which was 
determined from inductive conductivity 
measurements [27], and the total 
thickness variation (Feature 27), are 
also added to the set of features. The 
proposed machine-learning techniques 
are applied and compared with respect 
to the prediction accuracy of the 
Voc. The mean absolute error (MAE) 
between predicted and measured 
Voc is selected as the quality metric. 
Furthermore, the root mean square 
error (RMS) and Pearson correlation 
coefficient (Corr) are determined. 

In general ,  the application of 
powerful machine-learning techniques 
requires the evaluation of ‘unknown’ 
data; therefore, the data sets are split 
into disjoint training and testing sets 
for a valid evaluation of the prediction 
model. Frequently, a random selection 
of data is utilized. An advanced 
randomization can be used with the 
k-fold cross validation (e.g. Bishop [28]); 
by randomly splitting the data into  
k folds, all the data can be analysed. One 
of the k folds is iteratively predicted with 
a model trained by the remaining (k–1) 
folds.

The challenge of  a prediction 
model to make an accurate prediction 
increases with a decreasing degree of 
similarity between training and test 
sets. The analysis of data from unknown 
manufacturers, which represents the 
most challenging case, is considered 
in the second evaluation in this 
work. Iteratively, the data set of each 
manufacturer is selected as a test set and 
evaluated with a rating model trained 
on the data set containing all remaining 
manufacturers; each classification 
model is evaluated for these training/
testing configurations. The elastic-net 
regression returns the most relevant 
features for both solar cell processes, 
which are then compared with respect 
to the most-inf luencing material 

Figure 6. Overview of material selection and experimental approach. (Note: 
the numbers of wafers have been rounded.)
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features. Finally, the appearance of 
these relevant features in both processes 
and material classes (HPM and mc-Si) 
are considered within a more detailed 
comparison based on the j0 images of 
the final cells.

Quality of the different rating 
approaches
The PL images were analysed on the 
basis of the algorithm described in 
detail by Demant et al. [6]. The wafers 
were processed into solar cells, with 
Voc values in the range 600–630mV for 
the Al-BSF process and 610–650mV 
for the PERC process (neglecting 
outliers). The broad Voc range directly 
reflects the broad material spectrum. As 
expected, the PERC process reacts more 
sensitively than the Al-BSF process to 
the variations in material quality. The 

main evaluation results are listed in 
Table 1 and discussed next.

The prediction of Voc using a random 
selection of data (‘Evaluation 1’) yields 
very good results for the Al-BSF process, 
with MAE values of 1.3mV, 2.0mV and 
2.1mV for the SVR, elastic-net and two-
feature approaches respectively. The 
evaluation of the prediction quality 
of the set of PERC data, however, 
shows larger differences between the 
models. The qualities of the rating 
models are nevertheless ordered the 
same, with SVR achieving the smallest 
error (MAE=1.4mV). The elastic-
net approach yields a slight increase 
in prediction error (MAE=2.5mV), 
whereas the simple two-feature model 
completely fails to predict the solar 
cell quality within an industrial PERC 
process (MAE=6.9mV). The complex 
SVR therefore performs best for 

randomly selected data, regardless 
of the solar cell process. The high 
prediction quality reflects the quality 
of the approach but is also due to 
the remaining similarity between the 
training and test sets. Even for a random 
selection, however, the training and test 
sets do not include neighbouring wafers 
within the data set used.

In the case of forecasting material 
from an unknown manufacturer, this 
similarity is completely eliminated. 
The results in Fig. 7 show an example 
for the prediction of wafers from two 
unknown manufacturers (‘Evaluation 2a’) 
with HPM and standard mc-Si material 
for the Al-BSF and PERC processes. 
For the Al-BSF process, the elastic-net 
algorithm yields the best performance 
(MAE=1.8mV), followed by the SVR 
method (MAE=2.0mV) and the two-
feature approach (MAE=2.1mV), with 

Figure 7. Prediction results for wafers from two unknown manufacturers (Evaluation 2a) for both solar cell 
processes, PERC and Al-BSF, obtained using the simple two-feature (left), complex SVR (middle) and elastic-net 
(right) approaches. The Al-BSF data prediction (top row) shows high correlations for all three prediction models. 
The PERC data prediction (bottom row) can be achieved with the SVR and elastic-net approaches, while the two-
feature method fails completely.
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slightly higher prediction errors. This 
ranking is even more distinct for the 
PERC prediction: while the elastic-net 
approach produces low prediction errors 
(MAE=2.5mV), the prediction errors are 
higher for the SVR model (MAE=3.0mV), 
and the simple two-feature-model fails 
completely (MAE=6.9mV).

In addition, for unknown material, 
the prediction quality of the three 
ap p ro a c h e s  w a s  s y s te m at i c a l l y 
evaluated (‘Evaluation 2b’): the material 
from each of the manufacturers was 
rated consecutively with the three 
models, each of the models being 
trained using the material from all the 
other manufacturers. The results are 
presented in Fig. 8, which shows the 
MAE values of the prediction for each 
manufacturer and all three prediction 
models; the overall MAE summarizes 
the result for all manufacturers. The 
classification accuracy for the Al-BSF 
process is high with all three approaches.

As regards the PERC process, it can be 
seen in Fig. 8 that the simple two-feature 
approach mostly fails for all the different 

manufacturers (overall MAE=5.6mV). 
The prediction quality for SVR is also 
poor (overall MAE=3.5mV), which may 
be connected to an overfitting to the 
training data. In this most challenging 
task the robust elastic-net algorithm 
performs best (overall MAE=2.9mV); 
this can be interpreted as a very good 
result, considering the broad distribution 
of Voc values ranging from 40mV and 
above, and the pure process- and 
measurement-related Voc variations in 
the range of ~2mV.

Identification of relevant 
features
The applied elastic-net regression 
model allows the Voc to be predicted 
and the relevance of the features to be 
simultaneously selected and rated. The 
model selection identifies a robust model 
with the most relevant features only. For 
normalized features, the coefficients of 
the linear regression model indicate the 
importance of the parameters.

The most important features for the 

prediction of samples from both types 
of solar cell are the area fraction of 
thinned dislocations (Feature 2), and 
the area fraction of regions with low 
(Feature 7) and medium (Feature 8) local 
defect densities. Feature 2 represents 
dislocations or grain boundaries, which 
are thinned to their centres. As expected, 
the predicted solar cell quality decreases 
with the number of thinned structural 
defects and clusters of structural 
defects (Feature 8). On the other hand, 
it increases with the number of sparse 
structural defects (Feature 7), such as 
grain boundaries, which represent most 
structural defects identified in HPM 
wafers (see Fig. 4). These structures are 
less critical than dislocation clusters. For 
both types of solar cell, the distribution 
of PL structures and PL intensities 
plays an important role. The doping 
concentration was also considered to be 
a relevant feature in the rating model.

For PERC cells the second most 
important feature is different from 
that in the Al-BSF results: it quantifies 
instead the area fraction of regions 
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Figure 8. Prediction quality of material from an unknown manufacturer. The MAE is given for each manufacturer 
and is based on models trained using the remaining materials. The last two columns indicate the overall mean 
prediction result (‘Avg.’) and the prediction result on randomly selected test data (‘Rand.’). The elastic-net approach 
demonstrates the lowest overall MAE for the PERC prediction data.

Model Solar cell 
process

Two-feature 
model [mV]

Support vector 
regression [mV]

Elastic-net 
algorithm [mV]

Complexity Simple Robust and non-linear Linear, with 
optimized features

Evaluation 1: Random test set selection with fivefold cross-
validation (MAE)

Al-BSF 2.1 1.3 2.0

PERC 6.9 1.4 2.5

Evaluation 2a: Prediction of materials from two unknown 
manufacturers with HPM and standard wafers (MAE, cf. Fig. 7)

Al-BSF 2.1 2.0 1.8

PERC 6.9 3.0 2.5

Evaluation 2b: Systematic prediction of wafers from each 
manufacturer, on the basis of training with wafers from the 
remaining manufacturers (overall MAE) 

Al-BSF 2.1 2.2 2.2

PERC 5.6 3.5 2.9

Table 1. Overview of the prediction quality of the investigated regression models for different training and test 
configurations and solar cell data. Prediction qualities are quantified by the mean absolute error (MAE) of the 
prediction. (The term ‘unknown manufacturer’ denotes that no material from this manufacturer was represented in 
the training data.)
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with very low luminescence intensity 
(Feature 20) and has a strong negative 
impact on cell performance. According 
to the authors’ empirical evaluation, the 
area fraction of very low luminescence 
intensity replaces the quantification of 
contaminated regions (Feature 3).

The differences between PERC 
and Al-BSF cells were investigated by 
comparing the images of dark-saturation 
current of two neighbouring wafers from 
a corner brick. The contaminated regions 
are visible in the PL image shown in Fig. 
9(a). The contrast between the j0 value in 
the contaminated regions and the non-
contaminated regions is larger for PERC 
cells than for Al-BSF cells. This advantage 
of the Al-BSF process results from: 1) an 
enhanced phosphorus gettering during 
the two-sided emitter diffusion (which is 
reduced in the PERC process because of 
a one-sided emitter diffusion); and 2) the 
full-area aluminium gettering during rear-
side contact formation (which no longer 
occurs in the PERC process because of 
the local contacting of the passivated rear 
side).

Conclusion and outlook
A classification scheme has been 
developed to simultaneously predict 
the solar cell quality of standard mc-Si 
and HPM wafers. The development was 
based on a representative set of 7,500 
industrially available wafers from 72 
bricks and nine manufacturers, which 
were intensively characterized in the 
as-cut state in an incoming inspection 
and then processed into solar cells using 
an Al-BSF and a PERC method.

“The results demonstrate 
the quality of the proposed 

elastic-net approach.”

The quantification of the defects 
that showed up in the PL images 
was improved by means of robust 
image-processing algorithms. Using 
regularized regression (elastic-net 
approach), the prediction of the open-
circuit voltage for standard mc-Si 
and HPM material from ‘unknown’ 
manufacturers yielded average MAEs of 
2.2mV for the Al-BSF solar cell process 
and 2.9mV for the PERC one. For an 
industrial PERC process, the prediction 
of the quality for unknown wafer 
manufacturers was slightly less accurate 
using the SVR approach (MAE=3.5mV), 
but completely failed using the simple 
two-feature approach (MAE=5.6mV). 
The results demonstrate the quality of 
the proposed elastic-net approach.

Most of the structural defects in HPM 
can be traced back to grain boundaries, 
which are quantified as regions with 
low local defect density and which 
marginally affect cell quality. Thus 
a rating scheme has to differentiate 
between different levels of defect density 
in order to rate both types of material 
under investigation. Different feature 
weights are also deemed necessary for 
Al-BSF and PERC solar cells.

In follow-up investigations, higher-
order  input  parameters  wi l l  be 
analysed. A modelling of relevant 
features as proposed by Demant et al. 
[29] by considering spatially resolved 
quality data (e.g. Glatthaar et al. [26]) 
can also be used to further refine the 
rating scheme. Moreover, advanced 
image-processing techniques have 
been developed at ISE to analyse the 
crystallization process in more detail 
using PL images of as-cut wafers; 
the extracted parameters allow the 
defect development to be rated during 
crystallization. The application of 
new computer-vision technologies, 
such as the so-called ‘deep learning’, 

can further boost the material rating 
method. To implement such promising 
and data-intensive approaches, strong 
cooperation between industry and 
research will be necessary.
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