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Introduction 
While the cost of PV components and 
systems are rapidly falling, the upfront 
costs  of  PV ( before any energ y is 
generated) are still high. This is especially 
true when compared with conventional, 
fossil-fuel-based generation, where capital 
costs are lower but a significant portion of 
the total cost is for fuel over the lifespan 
of the plant. In contrast, with PV systems 
the fuel is ‘free’ and the costs are associated 
with initial installation and operations 
and maintenance. As a result, there is a 
high incentive to accurately predict and 
optimize the performance of the PV plant. 
This paper focuses on the issues that need 
to be considered in order to ensure that 
a PV plant will perform to its maximum 
potential. This is a relatively new field 
and there are plenty of opportunities for 
improvements.

The levelized cost of energy (LCOE) 
($/kWh) is a useful measure to optimize 
because it factors in all aspects of a 
project’s  value,  including costs and 
revenue as well as the time value of 
money. A simple representation of the 
LCOE is

   
  (1)

where the numerator represents the 
total cost (C) in today’s currency of the 
system over its lifetime (N years), and 
the denominator is the total amount of 
energy produced (Q), which is corrected 
for degradation and discounted for time. 
Future costs and revenue from energy 
production are discounted each year (n) by 
the discount rate (d) (or weighted average 
cost of capital), which takes into account 
the time value of money and the perceived 
risk of the project. A more detailed 
description and discussion of the LCOE 
can be found elsewhere [1].

“To optimize PV system 

performance and the LCOE, 

it is necessary to evaluate and 

compare costs and benefits 

related to technology and design 

decisions.”
If the value of the energy is higher than 

the LCOE, the project will earn a profit 
over its lifetime. The LCOE can increase 
if operating costs are higher than expected 
and/or if energy production is less than 
predicted. Optimizing (minimizing) 
the LCOE is complicated by the fact 
that costs and energy production are 
correlated in ways that are just beginning 
to be understood. For example, careful 
monitoring of the health of a PV system 
may increase system output by reducing 
d o w n t i m e  w h e n  co m p o n e n t s  f a i l . 
However, this will only lower the LCOE 
if the additional cost of monitoring is less 
than the revenue gained from greater 
energy production as a result of higher 
availability. Conversely, simply lowering 
the cost of the system by using less-
expensive components will not reduce the 
LCOE if the lower quality components 
compromise reliability and increase 
operations and maintenance costs during 
the life of the system. In order to optimize 
PV system performance and the LCOE, it 
is necessary to evaluate and compare costs 
and benefits related to technology and 
design decisions.

PV plant design considerations

Proper design is critical for building and 
operating a top-performing PV plant. At 
each step of the process, choices must be 
made that will have a significant impact on 
the performance (both expected and real) 
of the plant. In many cases, the choice that 
must be made may be whether or not to 

perform a certain type of pre-assessment, 
rather than being purely engineering or 
technology based. The following steps 
in the development of a PV plant will be 
explored:

Site characterization
Technology choices
Array configuration
Electrical system configuration

An example comparison will then 
be given of three PV systems, each 
using a different design and/or module 
technology. This comparison highlights 
some imp or tant  balance-of-system 
(BOS) implications of common design 
tradeoffs. This is followed by a discussion 
of plant operations issues and, finally, a 
discussion of opportunities for improving 
PV performance models to support 
performance optimization studies. 

Site characterization 
Assessment of the local solar resource 
potential is an important aspect of the 
selection of a PV site: inadequate prior 
assessment is  a common source of 
underperformance. Long-term, high-
quality irradiance datasets are available at 
only a handful of locations. Satellite data 
can be processed to estimate irradiance 
in most locations, but even this data can 
be biased by several per cent [2]. PV 
developers frequently set up a dedicated 
weather station at a site for a few months 
to a year and then compare direct 
measurements with other historical 
datasets, including satellite estimates. 
Developers often assume that bias errors 
can be identified and reduced as a result of 
the comparison (e.g. see Thuman et al. [3]).

The quality of the irradiance data 
for such a field campaign is critical: use 
of inaccurate sensors, failure to clean 
and maintain sensors, or lack of sensor 
calibration can introduce significant errors 
in irradiance measurements. It is also 
important to realize that certain irradiance 
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sensors only respond to a specif ic 
spectral range, which may not match the 
absorption spectrum of the planned PV 
modules. For example, the use of a silicon 
photodiode pyranometer to characterize 
the irradiance resource for a CdTe PV 
system may introduce a bias error. 

“The quality of the 

irradiance data for a field 

campaign is critical.”
The proximity of the nearest available, 

long-term irradiance dataset to the 
selected site is important to consider as 
well, since annual insolation can vary 
significantly over even short distances 
(microclimates). Gueymard and Wilcox [4] 
presented a study of irradiance variability 
in space and time for the USA, using a 
0.1° (~10km × 10km) gridded dataset; 
they concluded that spatial variability 
was highest (covariance of annual average 
insolation >5%) along the coastlines and 
mountainous areas, and lowest in f lat 
areas. Local studies in San Francisco have 
shown an even larger spatial variation in 
annual insolation across the city (>12%) 
[5]. For sites lacking such detailed studies, 
interviewing local residents, real estate 
agents, farmers and so on can be quite 
effective in identifying if there are local 
patterns in insolation.

Finally, uncertainty in irradiance and 
insolation data can be significant and should 
be considered. Uncertainty in irradiance 
(e.g. see Myers [6]) is different from the 
uncertainty in annual insolation, especially 
when the uncertainty that matters most is 
the mean annual insolation over the lifespan 
of the PV plant. Random errors that affect 
irradiance measurements will average out 
over time and have little effect on annual 
insolation. However, bias errors in the 
irradiance measurement – which can result 
from sun angle, temperature and spectral 
effects – can compound and result in a bias 
error in annual insolation. 

Interannual variability of insolation is 
important to quantify because it largely 
determines the variation in energ y 
production (and revenue) from year to 
year. Interannual variability quantifies the 
possible differences in insolation from 
year to year caused by climate cycles (e.g. 
ENSO/El Niño/La Niña, etc.). Gueymard 
and Wilcox [4] also examined interannual 
variability across the USA and found 
direct normal irradiance (DNI) to be 2–3 
times more variable than global horizontal 
irradiance (GHI). They also found that 
interannual variability appears to be 
positively correlated with cloudiness, with 
lower variability in sunnier locations. They 
found that the variation in the annual 
insolation was typically (95% of the time) 
less than 2% in the best PV locations in 

the southwest USA. In contrast, in more 
diffuse climates, such as central New York 
State, the interannual variability was much 
higher (>10%). Thus it might be expected 
that the annual PV output from a PV plant 
in a diffuse climate would vary year to year 
more than in a sunny climate.

Technology choices 
PV developers are faced with a plethora 
of technology choices when designing a 
system. Understanding the differences 
between the available technologies is 
critical to optimizing system performance. 
Most developers today choose module 
technology by weighting differences in 
module performance, quality, reliability, 
cost and confidence in the manufacturer’s 
ability to honour its warranty.

Module performance characteristics 
have a large effect on design considerations. 
Higher efficiency modules require less 

area and fewer BOS components (racks, 
wires, combiners, etc.), and may run cooler 
than less efficient modules. Differences in 
module design and materials can affect 
operating temperature and resulting 
efficiency. These aspects should be 
considered when comparing module 
costs. In addition, the spectral response of 
different cell types (c-Si, CdTe, CIGS, etc.) 
to actual site conditions can result in a 
spectral shift (actual performance relative 
to performance at the G173 spectrum). 
Nelson et al. [7] have shown that CdTe 
performance is sensitive to the spectral 
changes due to the variation of precipitable 
water in the atmosphere, which fluctuates 
seasonally at many sites. Available PV 
performance modelling applications do 
not include calculations that take account 
of this effect and may therefore introduce 
a seasonal bias error when estimating 
performance for CdTe systems. 

Figure 1. Two-axis tracker used at Sandia National Laboratories in Albuquerque, 
New Mexico, to measure module performance parameters.

Figure 2. Analysis of I-V curves under a variety of conditions is used to estimate PV 
module performance parameters for a number of available models.
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Another factor that can be important 
is the degree of consistency between 
m o d u l e s .  D i f f e r e n c e s  i n  m o d u l e 
performance characteristics can lead to 
mismatch and reduced performance when 
connected in series and operated at a single 
voltage typically controlled by the inverter. 
Module warranties usually include 
a tolerance on the power rating (e.g. 
215W±5%, which means a module delivers 
between 204 and 226W at STC). At Sandia 
National Laboratories in Albuquerque, 
New Mexico, outdoor performance is 
characterized by accurately measuring I-V 
curves from modules mounted on a two-
axis tracker (Fig. 1). 

These data are used to determine the 
parameters for PV performance models 
(Fig. 2), including the Sandia Photovoltaic 
Array Performance Model [8]. PV systems 
for long-term performance tests are also 
fielded at a number of different climate 
locations to measure system performance 
degradation rates, identify failure modes 
and track differences in performance in 
different weather conditions. Fig. 3 shows 
one of these long-term test beds at Sandia.

Array configuration 
Optimizing an array configuration involves 
choosing between fixed tilt and tracking, 
which has implications for row-to-row 
spacing, ground coverage area and total 
site area. Module orientation on racks can 
also affect performance, especially when 
row-to-row shading is an issue. Single-
axis tracking can boost annual energy 

production by as much as 25% and dual-
axis tracking by as much as 45% compared 
with a fixed-tilt system, but increased land is 
required to see these gains [9]. Additionally, 
tracking includes a mechanical system, 
which needs periodic maintenance and 
repair. Modern tracking controllers provide 
‘back tracking’, which minimizes row-to-
row shading at the beginning and end of 
the day. Such systems can require more 
stringent site preparation to ensure that the 
rows are level, since differences in row-to-
row elevation can introduce row-to-row 
shading during certain times of the year. 
Some single-axis trackers add a tilt to the 
rotation axis (e.g. Sun Power’s T20); this 
design results in a 6–7% increase in the 
plane-of-array irradiance (compared with 
horizontal-axis tracking) and is less sensitive 
to levelling issues, reducing the amount of 
site preparation that needs to be done [10]. 
However, tilted-axis tracking requires more 
land area than horizontal configurations 
because of the need to space the arrays 
further apart to minimize row-to-row 
shading.

Electrical system configuration 
The electrical configuration of a PV 
array affects the system performance in a 
number of ways. Current electrical codes 
in the USA (NEC) limit the maximum 
DC voltage to less than 600V. However, 
increasing the DC voltage can improve 
performance for several reasons. At higher 
voltages, currents are lower, resulting in 
smaller resistive losses in the DC wiring 

and/or enabling the use of wire with less 
copper and thus lower in cost. Higher 
voltage systems can utilize strings with 
more modules, reducing the number of 
combiner boxes and the wiring between 
strings. To explore these benefits, utility 
systems in the USA (which are not 
constrained by NEC) are installing systems 
designed for 1000V. Some systems in 
Europe are experimenting with voltages 
as high as 1500V. However, using higher 
system voltages also has its drawbacks, 
such as potential-induced degradation 
(PID) of certain types of module in humid 
environments [11,12]. Research into 
the costs and benefits of increasing DC 
voltages for PV systems is ongoing.

Designing for optimum performance 
requires that the electrical configuration 
take account of any shade that will be cast 
on the array. Module orientation (portrait 
vs. landscape) and string wiring design 
can be very important if any shading will 
occur. A small band of shade along the 
short edge of a typical PV module affects 
string performance far less than a shade 
band hitting the long edge, because the 
typical wiring pattern and the use of bypass 
diodes between the substrings of PV cells 
inside a module mean that shade along the 
short edge affects each substring equally 
and results in less mismatch between 
substrings. Similarly, shade affecting one 
string that is connected in parallel with 
other stings will have a different effect than 
the same shade area affecting parts of each 
of the parallel strings [13]. 

Figure 3. Long-term PV system test bed at Sandia National Laboratories, Albuquerque, New Mexico. Module and inverter 
performance is continuously monitored, and components are re-characterized annually.
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“Designing for optimum 

performance requires that the 

electrical configuration take 

account of any shade that will be 

cast on the array.”
New inverters and power electronic 

devices, including DC–DC converters, 
are making the electrical design of PV 
systems more complicated, but also offer 
additional avenues for optimizing system 
performance. Centralized inverters are 
usually able to convert DC to AC more 
efficiently, but, as arrays grow larger, DC 
current must be harvested from greater 
distances, resulting in longer wire lengths 
and greater DC losses. Switching to 
smaller ‘string’ inverters can reduce these 
wiring losses. In addition, because power 
output reporting is usually included as 
part of the inverter, smaller inverters may 
increase the fidelity of the monitoring 
system, providing granular information 
about power production from smaller 
parts of the system and allowing outages 
to be identified and located earlier. Such 
advantages must be weighed against 
differences in efficiency and costs.

BOS implications of  
technology choice
Sandia National Laboratories recently 
conducted a design study of three typical 
2MW PV systems to i l lustrate and 
document design, cost and performance 
d i f fe re n ce s  b e t w e e n  d i f fe re n t  P V 
technologies [14]. The study focused on 
three system types:

System A: mc-Si modules (230W STC); 
fixed latitude tilt
System B: CdTe modules (75W STC); 
fixed latitude tilt
System C: mc-Si modules (230W STC); 
horizontal single-axis tracking

A solar developer was commissioned 
to provide the system designs, with each 
system using eight 250kW inverters. 
Systems A and C were designed with 
the same modules and shared the same 
string configurations. Annual system 
performance was then estimated for a 
location in Salt Lake City, Utah, using 
PVSyst [15]. LCOE was estimated using 
the System Advisor Model [16]. The 
following summarizes some of the design 
differences between these systems. 

System B required 3.1 times the number 
of modules and 1.4 times the land area 
needed by System A. The open-circuit 
voltage for System B’s CdTe modules 
was 2.4 times greater than for the mc-Si 
modules used in Systems A and C, 
resulting in fewer modules per string. 

This, combined with the greater number 
of modules, resulted in System B requiring 
8.6 times the number of strings needed 
for the mc-Si system. Because of the larger 
number of strings, System B required 
1680 combiners and 48 recombiners, 
while Systems A and C only needed 48 
combiners and no recombiners. System 
B also required more wire and trenching 
work than the other systems. 

Total installed costs, predicted annual 
performance and LCOE are summarized 
in Table 1. Because of the larger area and 
greater number of components to install, 
System B had higher installation costs. 
However, despite significant differences 
between these system designs, the LCOE 
values are very similar.

The real performance differences 
show up when the predicted output for 
the systems is compared over time: Fig. 4 
shows predicted monthly system output. 
Note that System C produced significantly 
more energy during the summer but only 
slightly less energy during the winter 
than Systems A and B. This is a general 
characteristic of most horizontal single-
axis tracked systems.

Fig. 5 shows the average hourly output 
for each month and demonstrates that 
System C can deliver more energy at the 

beginning and end of the day during the 
summer because of the tracking of the 
modules; during the winter, however, 
the output in the middle of the day is 
significantly lower than the fixed-tilt 
systems. The CdTe system (System B) 
shows slightly improved performance 
during the summer owing to the lower 
temperature coefficient on the maximum 
power of CdTe modules compared with 
mc-Si. These plots illustrate that different 
designs can significantly affect the timing 
and magnitude of power generation, 
which in turn can affect how these systems 
impact the electrical systems to which they 
have to be connected.

Operations 

After an optimized PV plant has been 
designed and built and then connected 
to the grid, there is no guarantee that 
it will perform as predicted. Large PV 
plants comprise hundreds of thousands, 
sometimes millions, of components. The 
system is exposed to the environment, 
which can include dirt, plants, animals, 
snow, hail, wind and rain. Catastrophic 
losses (e.g. glass breakage due to hail) are 
usually covered by an insurance policy, 
but other issues such as cleaning the array, 

 System A System B System C

Technology mc-Si fixed CdTe fixed mc-Si tracked

Installed cost estimate [$/Wp] 2.88 2.99 3.24

Plane-of-array irradiance [kW/m2-yr] 1980 1980 2340

Annual output [MWh/yr] 3295 3407 3784

Levelized cost of energy [¢/kWh]

IPP financing 11.71 11.76 11.98

Cash financing 8.0 7.7 7.9

Table 1. Energy production and cost estimates for three example 2MW PV systems 
in Salt Lake City, Utah.
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grass/brush cutting around the array, and 
damage caused by vegetation control 
equipment, by wind or rain, or by animals 
are usually the responsibility of the owner/
operator or covered in an operations and 
maintenance (O&M) contract.

Soiling on the array is one of the most 
significant causes of lower than expected 
energy production [17,18]. Since there are 
no standards for measuring soiling rates 
as part of site characterization activities, 
each developer uses its own methods 
(e.g. see García et al. [19] and Caron and 
Littmann [20]). Seasonal variations can be 
significant, requiring a minimum of a one-
year study to adequately characterize a site. 
Soiling rates are also highly dependent on 
module tilt angle [21–23]. For much of the 
world, commercial rooftop systems with 
modules oriented at a typical 10–20° tilt 
may be more dramatically affected than 
utility-scale plants where the modules 
are mounted at latitude tilt. There is 
evidence that certain soil constituents may 
affect PV performance far more than the 
absolute amount of soil on the module 
surface, thus complicating measurement 
techniques [24,25]. Cleaning modules is 
expensive and may even be impractical or 
impossible because of water availability 
or  environmental  regulations .  The 
soiling level is dependent upon rainfall 
frequency and intensity, so an assessment 
of precipitation patterns and forecasts 
can help to optimize cleaning schedules. 
Research into soil-resistant coatings for 
module surfaces also offers promise for 
reducing energy loss from soiling [26]. 

Accelerated soiling studies are a new field 
with promise to reduce the time required 
to determine the severity of loss due to 
specific soil types and morphology, as well 
as assisting in determining appropriate 
mitigation methods [27,28].

Large PV arrays are frequently located 
in dry regions. However, covering these 
areas with impervious modules can cause 
precipitation to be focused on the lower edge 
of the array, creating a microenvironment 
favourable to rapid growth of vegetation. 
This can lead to an increase in the frequency 
of vegetation management when compared 
with the estimates made before the PV plant 
was built. 

“Existing PV performance 

modelling applications are 

designed to estimate annual 

energy yields and can only 

distinguish between a few 

differences in designs.”
Finally, in the event of module breakage 

or excessive degradation, it is important 
to realize that spare parts matching the 
original components may not be available 
after installation, since technology changes 
rapidly. The inclusion of spares in the 
initial design may be important to keep the 
system running at full capacity. Without 
spares, performance can suffer beyond a 
simple reduction in nameplate capacity, 

and strings must be reconfigured to 
remove failed modules.

Modelling expected 
performance 

Evaluating the sensitivity of choosing 
between different sites, technologies, 
designs and operations strategies requires 
a sophisticated set of models and data. 
Existing PV performance modelling 
applications [29] are designed to estimate 
annual energ y yields and can only 
distinguish between a few differences 
in designs (e.g. fixed vs. tracking, some 
module technology characteristics, etc.), 
and are not able to evaluate others (e.g. 
interannual and spatial variability, spectral 
and electrical mismatch, distributed vs. 
centralized power conversion, reliability 
of components, O&M strategies, etc.). 
These other factors are frequently included 
in the evaluation, but with simplified 
assumptions or derating factors. Users 
rarely have a robust technical basis for 
estimating the magnitudes of these 
factors and therefore model estimates 
are considered to have large uncertainty 
bounds. Some modelling applications 
do offer valuable features that allow 
uncertain parameters to be sampled from 
distributions, with the aim of minimizing 
or maximizing a reported output. An 
example of this feature is included as 
part of the National Renewable Energy 
Laborator y ’s System Advisor Model 
(SAM), which incorporates ‘sensitivity’ and 
‘optimization’ functionality [16].
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To respond to this situation, Sandia 
National  L ab orator ies  and the US 
Department of Energy have recently started 
the PV Performance Modeling Collaborative 
(PVPMC) [30] to collect and organize the 
latest information about PV performance 
modelling algorithms and methods, as well 
as to provide open-source analytic tools 
and functions that can be used to validate 
and expand existing modelling algorithms 
and methods. On the PVPMC website [31], 
stakeholders can research various modelling 
algorithms, download documents and gain 
access to a PV modelling toolbox for Matlab 
called the PV_LIB Toolbox. This toolbox 
contains numerous documented open-
source functions; it offers a great resource 
for model developers and users for learning 
about and validating the modelling steps 
used for estimating PV system yields.

The PVPMC has organized the process 
of PV performance modelling into a set of 
standard steps (Fig. 6):

 
1. Irradiance and weather. This step 

involves choosing a source for defining 

the irradiance and weather conditions 
expected for the site. Common 
sources include typical meteorological 
years (TMY), satellite-derived data and 
on-site ground measurements. There 
are numerous possible approaches 
for choosing weather inputs for 
performance modelling studies. 

2. Incident irradiance. This step aims 
to translate irradiance measured at 
standard orientations (horizontal, 
plane of array and normal to the sun) 
to beam and diffuse components 
on the plane of the array. Many 
algorithms are available for performing 
these translations but there is little 
consensus on which one is the most 
accurate for any given site and system. 

3. Shading, soiling and reflection 
losses. If the array is partially shaded 
or the modules are soiled, the amount 
of the incident irradiance available 
for conversion to electrical energy is 
reduced. There are various algorithms 
for calculating the shading and its effect 
on the system, but only a few methods 

exist for predicting the amount of 
soiling on the array with time. Usually 
this step is treated with a constant or 
time-varying derating factor.

4. Cell temperature .  The PV cell 
temperature is inf luenced by a 
number of factors, including module 
materials and construction, mounting 
and racking configurations, and the 
incident irradiance (modified by 
shading and soiling), wind speed 
and ambient temperature, among 
other variables. Many methods have 
been proposed for estimating cell 
temperature from these variables. 

5. Module I-V output. In this step the 
I-V curve of the module is predicted 
under the conditions described 
previously: irradiance (including 
spectrum) and cell temperature. 
There are various types of model that 
have been applied (single diode, semi-
empirical, etc.). 

6. DC and mismatch losses. This step 
involves estimating the losses in the 
DC circuit(s) due to wire resistance 

Figure 6. Standard steps in modelling PV plant performance (from the PV Performance Modeling Collaborative [31]).
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and mismatch b etwe en ser ies -
connected modules and parallel 
strings. Few performance modelling 
ap p l i c at i o n s  i n cl u d e  th i s  ste p 
explicitly, except by means of a scalar 
derating factor. Treating this part of 
the performance modelling problem 
is especially important in order for 
PV performance models to accurately 
represent performance of distributed-
array technologies designed to reduce 
such mismatch losses (D C–D C 
converters, string-level inverters, 
microinverters, etc.).

7. DC to DC maximum power point 
tracking. Most, if not all, modelling 
applications assume that the array’s 
DC voltage can be held at the 
maximum power point (MPP) for the 
array at all times. Differences between 
maximum power point tracking 
(MPPT) algorithms mean that the 
ability of different inverters to hold 
the MPP varies. Furthermore, PV 
systems may sometimes operate away 
from the maximum power point by 
design (e.g. ‘curtailment’ or operation 
at non-unity power factor). 

8. DC to AC conversion. This step 
accounts for the conversion efficiency 
of the inverter. This efficiency can vary 
with environmental parameters such 
as temperature and with electrical 
conditions such as DC power level. 

9. AC losses .  Once the power has 
been converted to AC it  must 
b e  t r a n s m i tte d  to  a  p o i n t  o f 
interconnection (revenue meter). 
Any losses along this transmission 
path (wire losses, transformer losses, 
etc.) are represented in this step. Few 
existing models represent this process 
in any detail [32]. 

10. System performance over time. 
Monitoring of plant output can help 
to identify system problems (e.g. 
degradation and component failures). 
There are a number of metrics 
used to track and evaluate system 
performance (performance ratio, 
performance index, etc.).

In many cases, existing PV performance 
models skip one or more of these steps by 
making assumptions or by including a loss 
or derating factor. As PV system design 
options become ever more complicated 
with new components (e.g . DC–DC 
converters), many of these previously 
overlooked and simplified steps will see 
more attention.

“Work on standardizing the 

modelling process has begun 

as part of the PV Performance 

Modeling Collaborative.”

Conclusions
The wide variety of PV system technologies, 
system designs, site conditions and 
operations strategies means that complex 
models  of  PV system performance 
are needed in order to represent the 
performance of PV plants.  Existing 
performance models only include a subset of 
the features and processes that affect system 
performance, and differences between 
these models mean that direct comparisons 
are difficult to make. The result is a lack 
of consensus on which model to use and 
how to document performance analyses 
so that the PV community has confidence 
in the performance predictions. Work 
on standardizing the modelling process 
has begun as part of the PV Performance 
Modeling Collaborative and provides a 
framework for adding model improvements, 
developing best practices and allowing 
different models to be compared in a 
consistent way. As PV performance 
models improve, the promise of full system 
optimization will eventually be fulfilled. 
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