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Big data and predictive 
maintenance in PV – the 
state of the art

Solar photovoltaic (PV) energy is 
nowadays one of the most effec-
tive alternatives to conventional 

dispatchable energy sources, mainly due 
to its increasing competitiveness, the 
growing energy demand of developing 
countries and the requirement of alterna-
tive technologies to alleviate pollution 
and reduce global warming. In 2017, 
the net capacity increased faster than 
any other power generating technol-
ogy (Figure 1), reaching approximately 
402GWdc globally [1]. Focusing on the 
European Union, solar additions increased 
by 36% to 8GW in 2018.

During the operative lifetime of the 
power plants, high-quality O&M activities 
are needed in order to maintain a high 
level of technical and economic perfor-
mance over time. In the following, we will 
overview the O&M needs and the newest 
approaches to address them. Finally, we 

will discuss future trends and give conclu-
sive remarks.

The importance of O&M activities 
in PV plants
O&M activities are undertaken by the 
O&M contractor, which generally shares 
its tasks with the technical asset manager, 
which is responsible for ensuring that the 
operations of the PV plant are compliant 
with the regulations and for reporting 
to the asset owner, and the O&M service 
provider, which instead has to monitor 
and supervise the PV site conditions and 
performances (operation team), as well as 
to carry out the necessary maintenance 
activities (maintenance service team). 
Supervision is usually done remotely 
in the operation centre (control room) 
by exploiting analytical monitoring 
software systems where all data collected 
by dataloggers at the PV site, down to 

inverter and string levels, are analysed to 
schedule short- to long-term operations 
to be followed by the maintenance team.

The procedure for fault management, 
when a failure is detected by the control 
room, is generally based on a three-
levels support, ranging from restoring 
device functionality without the need for 
component replacement up to compo-
nent substitution and software update, 
and relies on an escalation of corrective 
actions undertaken by professionals with 
increasing technical skills and access 
permissions, until the malfunction is 
solved, and the corresponding ticket is 
closed [2].

Key performance indicators (KPIs) are 
used for monitoring the operation of a 
PV plant and for comparing PV sites in a 
balanced fashion. They may be mainly 
divided between PV power plant KPIs, 
describing the PV site’s production perfor-
mances, and O&M contractor KPIs, which 
instead reflect the quality of the O&M 
service provided. Performance ratio (PR) 
[3] and availability [4] belong to the first 
group and are usually supervised by the 
asset manager by ensuring the optimal 
profitability of the plant over time. The 
availability, defined as the time percent-
age the plant operates over the whole 
time it should operate (usually required to 
be higher than 98% over a year), is also a 
striking indicator of the plant behaviour 
that needs continuous monitoring by 
the O&M service provider to undertake 
corrective actions when necessary. O&M 
contractor KPIs instead include the 
acknowledgement, intervention and 
resolution times, which monitor the time 
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Figure 1. Solar PV 
global capacity and 
annual additions 
for the period 
2007-2017 [1]
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necessary to acknowledge an alarm, reach 
the plant and solve the issue, respectively.

Several kinds of maintenance strategies 
can be followed. Preventive mainte-
nance is one of the typically followed: 
it includes regular visual and physical 
inspection of key components, such as 
string measurements or thermal scans of 
PV panels, in order to identify problems as 
soon as possible and start O&M activi-
ties. However, such a proactive strategy 
can involve expensive inspections with 
third parties and, since the frequency of 
such activities is not typically optimised, 
can lead to unsatisfactory results. On 
the other hand, the opposite reactive 
strategy, undertaking a corrective action 
only when a failure occurs, is usually more 
expensive as the losses due to downtime 
and repair or substitution of devices are 
higher.

In this scenario, the need for strategies 
able to predict incoming faults emerges, 
such as condition-based predictive 
maintenance approaches. Unlike preven-
tive and reactive strategies, this kind of 
strategy optimises simultaneously the 
downtime periods, the lost production 
and the total cost of maintenance activi-
ties; therefore, it should be considered 
as the core strategy of the O&M contrac-
tor activities. A recent study for GE 
Oil & Gas of offshore gas facilities [5] 
showed a clear relationship between the 
followed maintenance approach and the 
unplanned downtime. In Figure 2 the 
annual financial impact of maintenance 
activities (blue bar, on the left) and the 
unplanned downtime rate (grey curve, 
on the right) are shown for the reactive, 
preventive and predictive approaches. 

According to this study, a 36% decrease in 
unplanned downtime activities, as well as 
a 60% drop in the annual financial impact, 
may be achieved by following a predictive 
strategy.

Towards a predictive maintenance 
strategy
Predictive maintenance usually requires 
the collection of a large amount of data at 
PV sites. Since data analytics is effective in 
extracting actionable insights from data, 
now companies are struggling to digital-
ise their processes. Data analytics may be 
split into four main groups depending 
on the growing level of added value they 
bring and also on the complexity they 
require for design and implementation: 
descriptive, diagnostic, predictive 
and prescriptive analytics (Figure 3). A 
descriptive solution provides valuable 
insights into the past by means of data 
mining algorithms and summarising raw 
data from multiple sources. No additional 
information is provided, such as the 
reasons why the event happens. Unlike 
the descriptive solution, the diagnostic 
approach discovers dependencies in data 
and identifies hidden patterns, getting 
into the causes of a past event or ongoing 
behaviour. However, this diagnostic level 
is still reactive, since it is applied to past/
real-time events.

As information volume and quality 
increase, organisations may move towards 
the realm of a forward-looking (proactive) 
approach, adjusting their strategy accord-
ing to what is predicted for the future. 
In particular, predictive analytics adds 

a level of complexity to the descriptive 
and diagnostic analytics, exploiting their 
findings to predict tendencies and future 
trends. It takes advantage of statisti-
cal models, either classical or machine 
learning, and it is based on a probabilistic 
foundation to forecast the likelihood of a 
future outcome and provide actionable 
insights to companies.

Prescriptive analytics, starting from 
predictive outcomes, finally suggests the 
action(s) to prevent a future issue of an 
asset or to take advantage of a predicted 
trend. It can be successfully used to 
optimise the production, the schedul-
ing and inventory in the supply chain, or 
O&M actions (for example, operating only 
where and when necessary).

Predictive analytics on PV plants: 
benefits and challenges
While descriptive and diagnostic are well-
established techniques in the PV energy 
sector, predictive and prescriptive mainte-
nance are still at an embryonic stage and 
utilities and PV plant owners are only just 
beginning to turn their interest to such 
topics. These activities require a data-
driven approach in O&M activities, where 
an accurate data collection including 
real-time data, historical data, data from 
similar assets and historical maintenance 
records is necessary, therefore delaying 
the shift from the feasibility-study level to 
real implementation. 

The benefits of a proactive approach 
are manifold: a reduction in the compo-
nent repair and replacement costs of 
factory equipment, a decrease in the 

Figure 2. Annual financial impact of maintenance activities 
for offshore oil & gas facilities (in millions of dollars, on the 
left) and annual unplanned downtime rate and days (on the 
right, grey and black curves, respectively) for the reactive, 
preventive (planned) and predictive (use data and monitoring) 
approaches [5]

Figure 3. Chart describing the value added to the O&M activities undertaken by the four approaches – 
descriptive, diagnostic, predictive and prescriptive analytics – as a function of implementation difficulty 
(inspired by [6]). The higher is the service complexity, the larger is the value gained, up to predicting the 
future outcomes (predictive) and delivering the actions required to solve predicted failures (prescriptive)
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revenue loss due to plant downtime, 
a reduction of capital investment by 
extending the useful life of devices, 
better inventory management, and, in 
general, more effective O&M activities. 

However, challenges for the real 
implementation of a predictive service 
are also manifold: first and foremost, the 
need to gather at a predefined acquisi-
tion rate a huge amount of data related 
to both electrical and environmental 
signals, as well as archiving either 
automatic or manual alarm logbooks 
describing past failure events. Further-
more, as a predictive model is generally 
trained over healthy component-related 
instances and tested against unknown 
periods in which the component status 
should be predicted, a preliminary 
separation of historical instances into 
normal or abnormal classes is mandato-
ry but often difficult in practice. Clearly, a 
stable internet connection and a speedy 
and reliable IT infrastructure manag-
ing field data collection are required, 
starting from low-level Internet of Things 
(IoT) sensors and SCADA software 
installed at a PV site, up to a big data 
platform at the monitoring room level 
where data from different plants and 
countries are archived. 

The development of a predictive 
model must not forget to combine 
experience in the PV technical domain 
with data science expertise. This 
requires the inclusion of the O&M team 
in the whole lifecycle of the predictive 
service process and, in particular, in 
the phases of model features selection, 
model development and online model 
validation, where the accuracy of the 
model is compared to real-time events. 
But domain knowledge should not be 
limited to the interaction with the O&M 
team, as it should include also asset 
manufacturers in order to define, prior 
to the model design, a fault taxonomy 
table reporting, for each fault type that 
may be triggered in the field, at least 
the corresponding device involved, the 
alarm type, the manufacturer code, the 
event name and description, the event 
severity, as well as the potential cause of 
event and the actions to solve the issue. 
This is necessary to get the correspond-
ence among the past events recorded in 
the fault logbook and the taxonomy file, 
to prioritise events and to customise and 
tune the predictive models against the 
failures considered more critical accord-
ing to customer needs.

Techniques for predictive mainte-
nance on PV plants: the key role of 
artificial intelligence
The search for increasingly practical and 
accurate predictive maintenance tools 
has coincided with the simultaneous 
growth in artificial intelligence technol-
ogy and the introduction of statistical 
methods based on machine learning. 
Such a discipline has infinite applications: 
some months ago, a research group from 
California claimed for example its applica-
tion to diagnose patients with Alzheimer’s 
disease based on brain scans made some 
years before [7]. 

A typical workflow of an artificial 
intelligence model is outlined in Figure 
5. A dataset is typically extracted from 
an archive and preliminarily preproc-
essed to obtain clean data useful for 
further processing. Domain knowledge 
is usually required to select the best 
predictors for the problem of interest, 
as well as to combine different signals 
to achieve enhanced predictors (feature 
engineering). In order to handle signals 
concerning heterogeneous quantities, 
feature normalisation is typically applied. 
Then, traditional statistical or machine 
learning-based algorithms are used to 

create models based on these features 
and validated against a test set (histori-
cal and/or real time) to verify perfor-
mances. Usually an iterative approach is 
applied in order to find the best coupling 
between preprocessing and processing 
phases which maximises performances. 
Finally, the developed model is deployed 
to deliver a periodical service to the 
customer.

Predictive maintenance models may be 
designed for different target PV compo-
nents: PV module, string of PV panels, 
inverter, or the whole plant. They may be 
also grouped in three different catego-
ries, characterised simultaneously by an 
increasing level of details provided and by 
a shorter prediction horizon: prediction of 
generic faults and machine status, predic-
tion of severity category of the incoming 
event and prediction of specific faults. In 
the first case, the model predicts a generic 
failure through a measure of deviations 
from normal operation, in the second 
scenario it returns the criticality of the 
fault event according to asset manufac-
turer taxonomy, whereas in the third one 
it provides the specific fault class among 
those available in the taxonomy archive. 
The algorithmic core of the model and its 
complexity, as well as the input features 
fed into the model and the training 
methodology adopted, change accord-
ing to the level of detail required for the 
prediction. In particular, the prediction 
horizon may reach days or weeks in the 
first approach down to few days, or even 
hours or minutes, in the latter, depend-
ing on the statistics available and on the 
degree of correlations among the input 
predictor and the fault predicted [8].

An example of prediction of specific 
fault classes is shown in Figure 6 (next 
page) where the classification metrics 
accuracy, sensitivity and specificity, as 

Figure 4. Artificial intelligence has infinite applications. 
Recently a research group adopted such techniques for 
predicting new patients affected by Alzheimer’s disease [7]

Figure 5. A typical 
machine learning 
workflow
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well as the number of detected historical 
faults, are shown as a function of the time 
prior to the fault occurrences for different 
inverter failure class. Three examples 
for three different plants, one located in 

Romania and two in Greece, are reported 
(Figure 6 (a), (b) and (c), respectively). As 
can be seen, a strong correlation between 
statistics available and model perfor-
mance is evident, since machine learning 

algorithms are black-box computing units 
which learn the underlying non-linear 
relationship between input and output 
according to the training dataset avail-
able. When thousands of occurrences 
are available (Figure 6a), the prediction 
horizon is as large as seven days, with 
sensitivity decreasing down to almost 
50-60% about one week ahead. On the 
other hand, when the statistics amount to 
almost one hundred instances, prediction 
capabilities degrade much faster on the 
time horizon from one hour to 12 hours 
in advance (Figure 6b). It is worth notic-
ing that, however, a strong correlation 
between input predictors and fault class 
may enlarge the horizon in some excep-
tional cases (Figure 6c).

Control charts and machine learn-
ing algorithms
The category of models predicting 
generic failures includes essentially 
statistical process control approaches 
trained over nominal behaviour periods of 
the modelled component and then able 
to early detect or predict a not-nominal 
trend. Such approaches may be divided 
between univariate and multivariate, 
depending on how many signals are 

Figure 6. Classification metrics (bar plot on the left) and number of detected faults 
(grey area on the right) as a function of time in advance for predictive model devel-
oped by [8]. (a) fault class AC switch open (plant #1 in Romania); (b) fault class input 
over-current (plant #2 in Greece); (c): fault class AC switch fault (plant #3 in Greece)
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considered in the analysis. In particular, 
unlike the univariate method where a 
single signal at a time is analysed, the 
multivariate analysis accounts for a bunch 
of signals simultaneously, therefore 
including the effect of correlations.

The procedure in both cases generally 
consists of two phases: retrospective and 
prospective. In the retrospective phase a 
nominal period for the variable of interest 
is considered, where the variable may 
be a single signal or a KPI obtained by 
aggregating together different signals. In 
both cases, the model is built or trained 
against the nominal period identified by 
using domain knowledge (best case) or, 
at worst, by statistical considerations as 
explained earlier. Then, in the prospec-
tive phase, the algorithm is tested over 
an unknown period to predict out-of-
control component behaviour, triggering 
a generic warning. Auxiliary information 
may be also provided along with the 
warning, such as the specific sub-class 
problem, if the tags more correlated to 
the anomaly were identified, and the 
fault severity, in order to simplify also the 
maintenance activities. Additionally, in 
the case that the sub-class problem was 
suggested, the action to solve the issue 
may be proposed by getting it from a 
look-up table storing the correspond-
ence between issues and actions, thus 
turning the approach from predictive to 
prescriptive. However, since the informa-
tion regarding specific failures are neither 
present in this approach, nor used for 
training, and, additionally, different tags 
may concur to the same anomaly or the 
same tags can lead to different anomalies, 
the prescriptive suggestions provided 

may have a limited effectiveness.
The most common statistical 

methods predicting generic failures 
include traditional approaches, such as 
Hotelling’s T2 control chart [9, 10], and 
machine learning-based algorithms, both 
supervised and unsupervised. T2 is based 
on correlation analysis and describes 
the global system behaviour. It can be 
interpreted as a deviation of the process 
from a nominal condition. When deviation 
is below a threshold, the system is under 
control. On the contrary, when the thresh-
old is exceeded, the process is declared 
out-of-control. Another control chart 
widely researched is the cumulative sum 
[10], which is efficient in detecting small 
shifts in the mean of a process. Cumula-
tive sum is simply the partial sum of the 
variable of interest up to the current 
element and removing the mean value 
of the variable. By analysing its trend and 
unexpected and sudden slope changes, 
an out-of-control process can be easily 
detected or predicted. 

An application example of cumulative 
sum is shown in Figure 7  for a historical 
failure of a PV plant in Romania, which 
suffered a severe thermal issue in 2015 
that led to replacements of different 
inverters and to a prolonged downtime 
period. A deep valley with abnormal 
behaviour can be observed starting 
approximately at the end of October 
2014, some months before the failure 
occurred at the end of March 2015. In 
particular such failure led to a plant 
downtime of some months, with the 
intervention time scheduled in June 2015 
and the resolution time happening finally 
in August 2015, when the plant recovered 

its normal operation.
Besides traditional control charts, 

machine learning methods may be also 
applied: they include, for example, neural 
network (NN) and self-organising map 
(SOM) [8]. While NN belongs to the class 
of supervised algorithm, i.e. a target is 
present, SOM is unsupervised, i.e. it does 
not have this information. In a supervised 
learning model, the algorithm learns on 
a labelled dataset, for example repre-
sented by a set of input instances tagged 
with binary values identifying nominal 
or abnormal behaviour (the target), and 
provides an output that the algorithm can 
use to evaluate its accuracy on training 
(retrospective) data, before inferring over 
test data.

An unsupervised model, in contrast, 
provides unlabelled data that the 
algorithm tries to make sense of by 
extracting features and hidden structures 
on its own. In particular a SOM makes 
a non-linear mapping from an input 
N-dimensional space to a 2D space and 
preserves input topology by exploiting a 
competitive learning process. Changes in 
clusters emerging in the SOM map may 
be monitored by means of a KPI measur-
ing a process variation from normal state 
towards abnormal operating conditions 
when a threshold is crossed [8].

Prediction of specific faults needs, first 
of all, an amount of information, such as 
alarm logbooks and categorised taxonomy 
files, which at the present stage is only 
sometimes available. Indeed, this entails 
not only a speedy, reliable and fault-toler-
ant acquisition chain but also demands 
cooperation of the O&M team and asset 
manufactures. From a design point of view, 
only supervised algorithms may be applied 
since they must be trained against specific 
fault classes: typical suitable architectures 
are pattern recognition feed-forward NNs 
[8] or deep learning structures such as a 
stack of auto-encoders. 

A common issue is the so-called class 
unbalancing because the number of 
samples available for nominal class (the 
so-called negative or majority class) 
generally is much larger than that available 
for the faulty one (the so-called positive 
or minority class). Since training is done 
by minimising a cost function where the 
contribution of minority class is small, the 
model prediction is biased toward the 
majority class and, on average, misclas-
sification of minority instances occurs with 
a higher rate. Different techniques may 
be applied to overcome such a problem, 

Figure 7. Cumulative sum of T2 as a function of time for a PV plant in Romania. Inset: AC power for the 
inverter module installed on site. Reproduced with permission of i-EM srl, Flyby Group (www.i-em.eu)
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which may be grouped essentially in 
undersampling and oversampling. In 
the first case the number of instances 
of majority class is undersampled to 
make their number comparable to that 
of minority class; in the second case 
instead artificial instances are created to 
oversample the amount of minority faulty 
instances (e.g. SMOTE technique).

Prediction of specific faults formally 
closes the gap between predictive and 
prescriptive approaches because the fault 
taxonomy file may be used as a look-up 
table to suggest the action to solve 
the issue in correspondence with the 
predicted failure.

Further potentially effective techniques 
are those usually applied in the wind 
energy field, including bivariate analysis 
based on power curve modelling [11] and 
condition parameter-based models [12]. 
The latter approach, roughly speaking, 
consists in training over healthy instances 
and predicting the status of the compo-
nent by monitoring the residuals between 
the forecasted and the measured target 
parameters: if such a residual exceeds a 
threshold, a warning is triggered. Such a 
method has also been applied in the PV 
sector to analyse fault classes affecting 
inverter power production (e.g. “lack of 
isolation” failure mode in [13]), using, as 
input predictors to a NN, the electrical 
and environmental signals correlated to 
production (e.g. internal inverter tempera-
ture, accumulated active energy of the 
inverter, irradiance, ambient temperature, 
etc.) and as a target the power produc-

tion at the AC side of the inverter [13]. 
However, such methods fail to provide 
a comprehensive picture of the correla-
tions among the component parameters. 
In addition, they cannot identify all the 
component failures, as their root causes 

may be classified according to their 
impact as affecting the system perfor-
mance, the system availability and the 
cost of operations and reporting.

Profitability of a predictive service
Current literature regarding profitability 
of predictive service is still lacking and 
some revenue gain estimations have 
started to appear only recently. According 
to [14], application of a smart predictive 
service may increase the annual revenue 
of a typical standard-performing fleet of 
100MW PV plants from €128,000/year 
up to €240,000/year and from €368,000/
year up to €948,000/year for a low-perfor-
mance PV portfolio. Considering a typical 
lifetime of 20 years, the cumulative 
impact will range from €2.5 million to €20 
million. Similar estimations are presented 
in [15], where a 2% performance increase 
of a 100MW PV plant leads to €500,000 of 
additional annual revenue and a €420,000 
saving in the annual O&M activities. 
However, it is worth noting that these 
benefit analyses address a suite of tools 
which includes not only the application 
of machine learning-based models, but 
also additional performance trend studies 

Figure 8. Energy yield time series with respect to the ideal case with (blue curve) or without (black) the 
predictive service: yellow area represents the energy gain enabling such service. Fault occurrences percent-
age is also shown on the right (red). Inset: energy yield in the ideal case, as well as with or without the 
predictive service. Data are referred to an inverter module of a PV plant located in Romania [8]
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that support proactive maintenance. As a 
consequence, since predictive mainte-
nance is not the unique benefit provided, 
the estimated values cannot be assumed 
as a precise indication of the profitability 
of a “standalone” predictive maintenance 
service based on machine learning 
techniques. 

An interesting assessment of the 
maximum energy gain achievable, if a 
predictive service had been installed 
on-site and the ideal energy production 
instantly restored in correspondence of 
the fault prediction, is presented in Figure 
8 of work [8].  On the left axis the energy 
yield with respect to the ideal case (i.e. 
where AC power is the theoretical one 
achievable according to actual irradi-
ance) is shown as a function of time with 
and without the predictive service (here 
called SDM) enabled (blue and black 
curves, respectively). On the right axis the 
historical number of normalised daily fault 
occurrences is shown as a function of time 
(red curve). Such a number is computed 
according to the time duration of fault 
events recorded in the alarm logbook 
available for the PV site. The component 
under consideration is an inverter module 
of the same plant in Romania observed in 
Figure 7. As can be seen, if the predictive 
service had been applied in such a plant, 
energy yield would have been increased 
ideally by up to almost 10-15%, saving 
also the costs of inverter replacements 
and maintenance activities.

By considering a portfolio of PV assets 
and focusing on a predictive service at 
inverter level, the impact of its costs and 
benefits on the net yearly revenue gain 
may be assessed. Such benefits can be 
mainly grouped in decrease of revenue 
loss due to device downtime and reduc-
tion of O&M costs. 

Figure 9 helps to address the impact 
of the first factor, depicting a typical 
situation encountered, with the predictive 

service anticipating the failure occur-
rence, unlike a typical monitoring platform 
where the failure is detected only after it 
has happened. In particular, a mean value 
of about three weeks has been assessed 
by considering standard operations 
activities. In addition, according to [16], 
the time-to-repair (i.e. intervention plus 
resolution times) is about one month. 
According to these assumptions, the 
predictive service may therefore enable 
saving periods ranging from one month 
(time-to-repair) up to almost two months 
(time-to-repair + time-to-detection). 
According to domain expertise, a further 
reduction of O&M activities cost of about 
20-30% may be achieved.

Table 1 summarises the main hypoth-
esis and shows the benefits provided by 
the predictive service, both in terms of 
revenue gain, ranging from €90,000/y 
up to €145,000/y, and O&M cost saving, 
ranging from €280,000/y up to €420,000/y 
(considering O&M activity costs of €14/
kW). It has been assumed a portfolio of 
100MW, a specific yield of 1,500KWh/
KWp (utilisation factor of 17%), an energy 
price of €100/MWh, an inverter failure 
occurrence probability of 8% [12, 14] and 

a model sensitivity of 85%. In short, the 
total gain enabled by a predictive service 
ranges approximately from 2.7% up to 
4.2% of the yearly net revenue of a solar 
asset.

Internet of Things and the big data 
challenge
But why data are the new wealth just now? 
And how to extract value from such data?

Nowadays we live in the so-called era of 
the Internet of Things (IoT): a broad range 
of devices and objects are “smart”, i.e. 
linked to the internet and to each other, 
and able to acquire and manage data. It is 
estimated that by 2020 the accumulated 
volume of big data will increase up to 
roughly 44 zettabytes (ZB), i.e. 44 trillion 
GB [17], due to the huge increase in things 
creating data and the refined granular-
ity of data being produced. Big data are 
not characterised only by the Volume, 
but also by Variety, Velocity, Veracity, 
and Variability (the so called five “Vs” of 
big data”). Such data are generated by a 
great variety of heterogeneous sources, 
from social media to sensors and mobile 
devices, both in structured and unstruc-
tured forms. They are also collected at a 
high rate (velocity): every 60 seconds, it 
is estimated that there are 72 hours of 
footage uploaded to YouTube, more than 
2 million Instagram posts and 204 million 
emails sent. In addition, data need verac-
ity, i.e. they should be of good quality 
that is continuously updated in real-time. 
Finally, the meaning of data depends on 
the context in which they are collected, 
making important the use of technical 
domain knowledge (variability).

The IoT revolution occurs also in the PV 
energy sector: all components are now 
instrumented and data loggers allow 
the monitoring of many heterogeneous 
parameters thanks to specialised sensors. 
They include, for example, inverter 
internal parameters, generation data 
and meteorological data. Such data are 
typically pushed to a cloud server, which 
gives the flexibility of preserving a huge 
volume of historical plant data. The data 
are also stored at a local control room 
and can be retrieved in case of commu-
nication failure with the cloud server, 
thus ensuring reliable and accurate data 
availability. 

But such a volume of data requires 
software and hardware infrastructure 
suitable for analysing in real-time this 
continuous stream of information in 
order to extract meaningful insights, and 

Figure 9. Fault events timeline. The positions of fault prediction by the predictive service, as well as the fault 
occurrence, fault detection by standard monitoring platform and nominal behaviour restored are shown. 
The predictive service allows a lost production saving from one month (assumed as the mean duration of 
time to repair) up to almost two months (assuming three weeks as the mean duration of time to detection 
according to current monitoring systems)

Benefit Assumption

Time to Repair 744h (1 month)

Time to Detection 504h (3 weeks)

Predictive Model Sensitivity 85%

Failure Probability 8%

O&M Savings 20-30 %

Benefit Evaluation

Revenue Gain from €90k/y up to €145k/y *

O&M Cost Savings from €280k/y up to €420k/y **

Benefit impact on net revenue from 2.7% up to 4.2% ***

Table 1. Benefit assumptions used for the evaluation of 
predictive maintenance service profitability and benefit 
values. The latter are reported both as absolute values and as 
percentages of the net revenue of a PV portfolio.
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then convert such insights into actions 
useful to improve the overall business 
value. Application domains are manifold: 
transportation industry, media and 
entertainment industry, health industry, 
government industry, energy sector and 
many others. Here the big data analytics 
tools come into play, due to their capacity 
to handle large volumes of data gener-
ated from IoT devices. And this is also the 
right time to analyse such data by means 
of machine learning and deep learning 
techniques; indeed, the availability of 
massive amounts of data proceeds along 
with the advances in machine learning 
algorithms and the dramatic progress in 
computer processing capabilities.

Hadoop and modern big data 
platforms
It has been calculated that a PV plant, 
with an installed capacity of 500MW and 
single panels generating around 200W of 
DC power, produces almost 8GB of data 
every second [18]. Such a volume can be 
neither stored in conventional databases, 
nor processed by a single local computing 
resource. 

In 2008 Yahoo released Apache Hadoop 
as an open-source project and in the 
last few years large companies have 
adopted it as a next-generation platform, 
collecting massive data assets in Hadoop 
Data Lakes. In particular, Hadoop is an 
open-source platform and framework 
for storage and large-scale processing of 
datasets. 

Hadoop offers many advantages: first, 
it can store and process quickly huge 
amount of heterogeneous data and it can 
archive both traditional structured data 
and challenging unstructured data.

Secondly, Hadoop has an enormous 
computing power and may also handle 
virtually limitless concurrent tasks or jobs. 
In addition, it is fault-tolerant and flexible, 
since both unstructured and structured 
data may be stored without the need of 
pre-processing. It is finally low-cost and 
scalable. 

However, while using Hadoop for 
broad predictive analytics, companies 
discovered limits in its use concerning 
both performance and complexity. For 
this reason, a new platform called Apache 
Spark has been developed on top of 
Hadoop, leveraging Hadoop’s big data 
management capabilities while achieving 
higher performances by running predic-
tive analytics in Apache Spark. 

Many different Hadoop distributions 

exist. Top tier includes solutions such as 
Cloudera, Hortonworks, MapR, IBM and 
Pivotal. They may be deployed either on 
customers’ premise, in a private cloud or 
in a public cloud. Additional cloud-based 
Hadoop distributions exist, such as for 
example Amazon Web Services and 
Microsoft Azure HD Insights: unlike the 
previous distributions, such solutions 
run on public clouds and cannot run on 
the customer’s hardware.

Paradigm shift: “data to computa-
tion” to “computation to data”
The complexity of using Spark and 
Hadoop to develop predictive analyt-
ics applications on large data assets, 
however, makes it challenging for 
companies to find or train human 
resources with the right skills. For these 
reasons, recently Microsoft has launched 
a new flexible enterprise platform called 
Microsoft Machine Learning Server 
(previously known as Microsoft R Server), 
which allows R developers to conduct 
the different steps of data science, from 
data exploration to predictive modelling, 
on large data assets stored in Hadoop, 
but without the need to become 
Hadoop experts themselves. The 
solution is the result of the acquisition in 
2015 of the company Revolution Analyt-
ics by Microsoft and of further improve-
ments of the product already available 
in that year. A recent version supports 
also the Python language. Thanks 
to the availability of the RevoScaleR 
Package, such language may manage 
large datasets and develop machine 
learning algorithms without the need of 
loading them all at once in the memory. 
Additionally, it makes possible to run 
code in an efficient, parallel and scalable 
fashion, finally deploying the model 
on a remote server such as SQL Server 
or a Spark cluster with minimal effort, 
thus reducing the time-to-market of 
the product or service developed. R 
Server therefore shifts the computa-
tion methodology from the traditional 
paradigm “Data to Computation”, i.e. 
data moved from the environment 
where they reside to that of comput-
ing unit, to the new one “Computation 
to Data”, i.e. computation performed 
just where the data live. In this manner, 
the time to move data is avoided and, 
additionally, it may be taken advantage 
of the computing power, as well as of 
the scalability of the environment where 
data are located.

Future trends
As discussed, the digital revolution of the 
PV sector is just happening: due to the 
need of reducing the cost of maintenance 
activities, solar operations and mainte-
nance vendors are now turning to innova-
tive technologies to remain competitive 
and profitable. In addition to big data 
analytics, deep learning and augmented 
reality will be the next key innovations 
to enhance maintenance capabilities, by 
improving the efficiency of operational 
processes, and by strengthening the 
digitalisation process. PV systems require 
frequent diagnosis to analyse the effect of 
external agents on PV panels. Thermo-
graphic inspections are the most effective 
methods for PV module failure detection. 
However, manual analysis of massive 
amounts of images acquired by cameras 
mounted on drones or car roofs and 
resulting from inspection of large-scale 
PV power plants is time consuming and 
prone to human errors. Deep learning, 
which is a machine learning technique 
generally applied to classification and/or 
detection (i.e. classification and localisa-
tion) of objects inside images, may help 
in automating such analysis and locating 
earlier potential defects at cell, module 
and string levels such as hot spots, cracks 
or abnormal soiling, as well as classifying 
failures in real-time.

Automatic object detection may 
be combined also with augmented 
reality (AR) tools, in order to overlay on 
the detected asset its corresponding 
virtual object and support mainte-
nance activities (see Figure 10 [19]). In 
particular AR and virtual reality (VR) 
tools have multiple benefits in mainte-
nance activities: they reduce downtime 
costs, due to quicker intervention times, 
and enhance employee capabilities, 
by augmenting and speeding up their 
cognition by showing only the neces-
sary information of the environment all 
around. In addition, they decrease travel 
costs worldwide of maintenance teams, 
allowing the operator to request online 
real-time involvement of remote special-
ists or to request online big data analytics 
processes to run on the interested site. 
Finally, they reduce costs and improve the 
effectiveness of training courses, allow-
ing trainees to learn in an immersive VR 
environment synthesised from reality: for 
example, initially projecting augmented 
reality contents on to a virtual environ-
ment while the trainee is in its office and, 
as a second level of training, showing AR 
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contents over the real environment as 
detected from a camera on the helmet 
of the user. An example of ARVR generic 
Software Development Kit (SDK) is that 
provided by Mapbox [20] that, based on 
most widespread 3D engine and libraries 
like Unity or OpenGL, allows developers to 
use their APIs with pay-per-use-fees (free 
for emerging applications). Instead Reflect 
Remote [21] is an interesting product 
of AR solution for remote assistance 
employed together with holographic or 
3D glasses. 

Additionally, Data Analytics as a 
Service (DAaaS) is now starting to attract 
attention also in the renewable energy 
field. It is an extensible analytical cloud-
based platform approach where various 
tools for data analytics are available 
to users and can be configured by the 
users themselves to process and analyse 
massive amounts of heterogeneous 

data. It includes mainly two elements: 
a run-time environment, i.e. a platform 
for processing data, and a workbench 
environment where the users, from a 
skilled data scientist to a business user or 
a maintenance operator, may configure 
the system by using a set of analytics 
tools to handle different use cases. In this 
manner, it is possible for a maintenance 
team, which does not want to share their 
technical knowledge with external data 
analytics vendors, to analyse, interpret 
and predict underlying patterns in data 
even if they have no specific data science 
expertise. The direction is clear: make 
data science more democratic allowing 
everyone, even those not having a data 
science background, to analyse data and 
make predictions by means of automatic 
models built on raw data. Scientists at MIT 
are recently researching on this topic [22].

The future is just around the corner.

Figure 10. Augmented reality for assistance in maintenance operations [19]
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