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Introduction
As now widely recognized, the amorphous/
crystalline silicon heterojunction (a-Si:H/c-Si, SHJ) 
is one of the most attractive solar cell architectures, 
combining high performance and industrial 
compatibility. The low-temperature, high-throughput 

and cost-effective processes involved, the bifaciality, 
and the option of a rear-contact cell design are the 
competitive advantages of SHJ technology over other 
cell architectures [1,2]. Because of such advantages, 
an SHJ market is currently emerging, with a 5GW 
production capacity forecast in around 2020 [3]. 
The SHJ cell concept currently holds a world-record 
efficiency of 26.7% in its back-contact configuration 
[4].

CEA-INES has been exploring heterojunction cell 
technology for over 10 years, and an industrial pilot 
line has been in operation since 2011. The pilot line 
offers a turnaround time of <8h from as-cut wafers 
to electrical cell testing and sorting, at a nominal 
capacity of 2,400 wafers per hour, in combination 
with flexible R&D activities for each individual 
process step [5,6]. In 2016 and 2017, a hundred 
thousand wafers per year were fed into the pilot 
line to respond to industrial partner requests and to 
develop SHJ process know-how at CEA-INES. The 
production baseline performance during the first 
quarter of 2018 is shown in Fig. 1.

Work at the CEA-INES SHJ cell pilot line is 
complemented by an automated module pilot line 
to develop encapsulation and interconnection 
options. This notably includes bifacial modules 
and low-temperature cell interconnection options, 
such as the Meyer Burger SmartWire Connection 
Technology (SWCT) concept [7]. SWCT is especially 
suited to thinner cells, as the mechanical stress peaks 
generated on the cell are lower than in the case of 
standard ribbon interconnection. Moreover, SWCT 
is a redundant interconnection concept, with the 
impact of cell cracks on module power being lower. 
The module pilot line is supported by indoor testing 
facilities (climate chambers and mechanical test 
benches) and diagnostic tools for evaluating long-
term module reliability, as well as by outdoor testing 
facilities [7].

This paper describes the work carried out on 
processing ultrathin (70–100µm) 156mm × 156mm 
wafers. The goals are twofold: 1) to reduce cell 
production costs; and 2) to enable innovative module 
designs, such as lightweight modules, either flexible 
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or rigid in nature. The need for cost reduction is 
driven by the fact that current wafer production 
costs (including material and sawing) still represent 
as much as 35% of the total costs of an industrial PV 
module [3].

The second goal, relating to innovative module 
architectures, is driven by the PV application 
potential in areas such as aerospace, vehicles, 
boats or building integration, where non-planar 
shapes and weight reduction (including that of the 
cells) can be a key requirement. Figs. 2 and 3 show 
examples of such lightweight modules integrated 
in unmanned aerial vehicles for observation and 
telecommunication. In these two particular cases, 
the targeted module weight is less than 700g/m2, in 
contrast to the weight of  
12kg/m2 for standard glass–backsheet modules, and 
to the weight of standard 180µm silicon cells, which 
already amounts to 450g/m2.

The potential for reducing the thickness of the 
SHJ cell is based on some of the following key 
characteristics. The SHJ cell design is symmetrical 
with respect to the front and back sides (see Fig. 
4), and all steps of the cell and module process 
operate at moderate temperatures below 250°C 
(compared with about 800°C for most other cell 
designs). This makes the cell much less sensitive to 
bowing/warping during cell metallization, which are 
bothersome phenomena for thin wafers [8]. Most 
importantly, surface recombination mechanisms 
generally become more important as wafer thickness 
is reduced. Here, the SHJ cell offers a competitive 
advantage over other cell designs, as the thin a-Si 
layer provides an outstanding surface passivation 
of the c-Si. Thinning the wafer leads to enhanced 
electron–hole pair generation as well as to reduced 
recombination in the c-Si bulk, effectively resulting 
in an increase in open-circuit voltage Voc, as will be 
demonstrated in the following sections.

In the following discussion, the way in which 
the cell production process of the pilot line has 
been adapted to deal with wafers of thicknesses 
down to 40µm will be described. Standard wafers 
from three different commercial suppliers were 
used; for evaluation purposes, these wafers were 
chemically thinned. It will be demonstrated how 
the mechanical and electro-optical characteristics of 
SHJ cells appear better suited to cell thinning than 
other cell architectures. The key process steps for the 
module assembly of these thin cells will be discussed, 

“The need for cost reduction is 
driven by the fact that current 
wafer production costs still 
represent as much as 35% of the 
total costs of an industrial PV 
module.”

Figure 2. A solar-powered drone co-developed by CEA-INES, commercialized by 
SUNBIRDS in 2017. The PV module weighs 640g/m2.

Figure 4. The symmetrical bifacial structure of the silicon heterojunction (SHJ) cell.

Figure 3. Artist’s impression of STRATOBUS, the solar-powered high-altitude pseudo-
satellite (HAPS) under development by Thales Alenia Space, with industrialization 
foreseen in 2020.
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and some prototypes presented. Finally, it will be 
indicated how these characteristics contribute to an 
overall cost reduction when an optimal cell thickness 
of around 90µm is chosen.

Dealing with thin wafers in an SHJ cell 
production environment
The CEA-INES ‘LabFab’ pilot line has a standard 
capability of producing 130 to 160µm SHJ cells at 
a processing rate of 2,400 wafers/hour. The global 
breakage rate on the line is well below 1.5% for this 
standard thickness. The breakage rate as a function of 
wafer thickness has been monitored along the whole 
process chain (Fig. 5), revealing wafer automation 
(transfer/load/unload) during deposition and 
metallization to be the main cause of breakage [9]. 
Wafer flexion tests demonstrate that thin wafers are 
initially no more fragile than the reference wafers 
(Fig. 6). An initial integration with standard line 
settings has allowed an identification of the main 
issues for the production of thin wafers on the SHJ 
production line. The significant increase in breakage 
rate below 100µm appeared to be mostly related to 
the handling between deposition chambers and 
cassettes, the wafer stiction during wet processing, 
and the metallization screen printing.

Several line adjustments have been performed 
to reduce breakage rate and global cell defectivity. 
This iterative line optimization includes automation 
tuning

No breakages were observed during I–V testing 
or sorting, for either busbarless or 4BB cells on 
wafers >60µm. With these straightforward line 
adjustments, a reduction in the total line breakage 
rate was obtained during 2017 (Fig. 7). Although 
line throughput is currently affected for wafers 
<100µm (slower wafer robotics, fewer wafers per 
carrier), processing of wafers down to 80µm could 
be maintained at nominal throughput using simple 
modifications of cassettes or pickers. On the other 
hand, for thicknesses below 70µm the current 
production line and equipment would require major 
upgrades (such as single-side wet etch and cleaning 
tools, and new transfer systems) to maintain a high 
throughput and a low breakage rate. Cells have 
therefore been processed from 70 to 40µm wafers in a 
semi-automated/manual mode.

SHJ cell performance for thicknesses 
down to 40µm
Sets of wafers with  different thicknesses down to 90µm 
were processed with no modification of the current 
production flow. As an illustration, Fig. 8 shows the 
effect of wafer thickness on the increase in the number 
of wafers obtained from an ingot, compared with the 
160µm reference thickness: at a wafer thickness of 90µm 
there is a 40% increase in the number of wafers. With 
the cost of silicon material contributing 24% to the final 
module costs [3], a reduction of 10% in module cost for 
90µm wafers is implied.

Results for one batch of 4BB bifacial cells are 

Figure 5. Impact of wafer thickness on breakage rate (without modification of the 
current production flow).

Figure 6. Flexibility of a 60µm SHJ bifacial cell (156mm × 156mm).

Figure 7. Improved breakage rate with specific line adjustments.
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presented in Fig. 9. For cell thicknesses ranging 
between 160µm and 90µm, the final cell efficiency 
remains approximately the same. For all the batches, 
with a typical size of 30 to 200 wafers, it was noticed 
that record efficiencies in the 90–100µm range are 
very close to those for the reference wafers at 160µm, 
namely 22.1% versus 22.3%, proving the compatibility 
of such thin wafers with very high efficiencies. 
Average efficiency is more affected than record 

efficiency, which implies that process defectivity is 
slightly higher for the thinner wafers. This defectivity 
seems not to be due to handling-related wafer 
damage, but rather to wafer misalignment during 
PVD TCO deposition, causing edge isolation issues 
(i.e. shunts), as shown in Fig. 10.

The good overall efficiency performance of the 
thin cells is mostly due to the increase in Voc for 
thinner cells, as shown in Fig. 11. This Voc gain is in 
turn due to the outstanding surface passivation of 
the c-Si wafer by the a-Si layers. This wafer thinning, 
however, comes at the expense of a lower short-
circuit current (Isc), attributed to reduced photon 
absorption in the infrared (IR) region of the solar 
spectrum. In practice, the gain in Voc does in fact 
almost offset the loss in   for wafers below 100µm, 
which is represented in Fig. 12. The IR response of 
thin cells can be increased by specifically optimizing 
the electro-optical properties of the rear TCO layer 
in order to improve internal reflection and IR light 
trapping [10]. Other options for optimizing the cell 
current, such as the use of a back reflector at the 
cell rear side or a module with a white reflective 
backsheet, would be at the expense of bifaciality. 

Figs. 10, 11 and 12 show the results for three 
different wafer providers, used to evaluate the impact 
of the incoming wafer quality/purity. Fig. 12 shows 
how these three wafer qualities have a similar Jsc 
loss behaviour of around 0.01mA/cm2 per micron 
thickness. Interestingly, Fig. 11 reveals that the lower 

Figure 8. Increase in the number of wafers from an ingot as a function of wafer 
thickness, for three different values of kerf loss.
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wafer quality of provider 3, with the lowest Voc at 
160µm thickness, is seen to improve the most with 
wafer thinning, achieving a Voc at around 90µm 
thickness, which is similar to that obtained with 
the higher wafer quality counterparts. A transition 
to thinner wafers would therefore allow the use of 
lower-quality wafers, and thus offer an additional 
reduction in wafer cost.

Finally, the feasibility of integrating wafers of 
thicknesses down to 40µm was evaluated on the pilot 
line; the results are given in Fig. 13 and Table 1. Wafers 
below 80µm were processed on the line operated in a 
semi-automatic mode with manual loading, unloading 
and I–V testing to avoid breakage by the wafer-transfer 
conveyor used in the automatic mode. On the other 
hand, this manual handling introduces additional 
defectivity issues. The current pilot line encounters its 
limits at a wafer thickness of 40µm, at which point the 
breakage rate rapidly approaches 100%.

Module assembly of thin SHJ cells
The feasibility of a module assembly incorporating 
90µm SHJ cells was evaluated on the module pilot line 
at CEA-INES. Full-size 60-cell modules and 4-cell mini-
modules were fabricated; these included monofacial 
(glass–backsheet) and bifacial (glass–glass) module 
designs, using ribbons or SmartWire technology as cell 
interconnection. The module assembly was performed 
without any changes to the standard bill of materials 
(BOM) used for the assembly of 160µm cells. An 
industrial laminator was used for cell encapsulation, 
as well as an industrial tabber/stringer for the ribbon 
interconnection using conductive adhesives (ECA). 
The electroluminescence (EL) images in Fig. 14 reveal 
defect-free modules after lamination and subsequent 
thermal cycling in accordance with IEC 61215. The 
power loss of these modules after the 200 thermal 
cycles is shown in Fig. 15 and appears to be less than 
3%, well below the 5% criterion of the IEC 61215 
certification standard.

On the basis of these encouraging results for 
4-cell mini-modules, full-size 60-cell modules were 
assembled, for both glass–backsheet (monofacial) 
and glass–glass (bifacial) architectures. The EL 
image and performance of an example of a 60-cell 
glass–backsheet module is shown in Fig. 16: the 
module features a cell-to-module (CTM) ratio of 
99.1% and a very low massic module power (Wp per 
gram of silicon), achieving the symbolic target of 
1Wp/g Si.

Another example, given in Fig. 17, shows a 
24-cell module assembled with 115µm-thick SHJ 
cells and intended for semi-flexible applications 
on a stratospheric airship (or HAPS: high-altitude 
pseudo-satellite) for telecommunication, under 
development by Thales Alenia Space. The module 
efficiency is 18% and the power loss is less than 
5% after 500 thermal cycles. The thin cells also 
contribute to the very low specific weight of only 
600g/m2, which allows a higher effective payload of 
the airship.

Figure 10. Dispersion in shunt resistance (Rsh) increases below 90µm wafer thickness. 

Figure 11. Impact of wafer thickness on Voc for three wafer providers.

Figure 9. Impact of cell thickness on efficiency, for one batch of wafers based on 2016 
process of reference.
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“The optimal cell thickness was 
estimated between 90μm and 
100μm.”

Cost considerations
The potential cost reduction thanks to the use of 
thinner wafers in an SHJ industrial production 
line (80MW nameplate capacity, 4BB cell 
configuration) was evaluated using an internal cost 
model similar to that given in Louwen et al. [11]. On 

the basis of the current pilot line results obtained, 
the optimal cell thickness was estimated between 
90µm and 100µm (Fig. 18). For even thinner wafers, 
the main challenges for the future are the likely 
decrease in efficiency and increase in breakage 
rate, which might no longer be offset by the lower 
substrate costs. 

Complementary to these cost considerations 
versus wafer thickness, it is interesting to note 
that analytical calculations of cell performance 
as a function of thickness also gave an optimal 
value of around 100µm, as illustrated in Fig. 19 
[12]. These calculations were based on a similar 
approach to that reported in Richter et al. [13], but 
with additional defect-induced recombination 
mechanisms and using characteristic values for 
recombination and resistivity of the SHJ cells, as 
measured on the CEA-INES pilot line.

Conclusion and outlook
The industrial compatibility of thinner wafers for 
the manufacturing of heterojunction cells has been 
demonstrated down to a thickness of 80µm and 
even further, down to 40µm, on the semi-industrial 
LabFab pilot line at CEA-INES; at 90µm  
thickness, an average cell efficiency of 20.8% has 
been achieved, with a record efficiency of 22.1%. 
The optimal thickness range, with respect to 
performance, production cost and compatibility 
with the current pilot line layout, was identified 
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Figure 13. SHJ cell efficiencies obtained for ultrathin wafers of thicknesses down to 40µm, fully processed on the CEA-INES pilot line based on a 2016 process 
of reference

 

 

Thickness 
[µm] 

Jsc 
[mA/cm2] 

Voc 
[mV] 

FF 
[%] 

η 
[%] 

40 34.7 730 73.3 18.6 

45 35.1 732 72.7 18.7 

Figure 14. EL inspection of 4-cell glass–backsheet mini-modules with 110µm SHJ cells, after lamination and IEC thermal cycling (100 and 200 thermal 
cycles).

Figure 15. Relative power loss during 200 thermal cycles of SHJ glass–backsheet modules with cell thicknesses of 110, 100 and 85µm.

Figure 16. EL image and performance of a 60-cell glass–backsheet module with 93µm cells, yielding a massic module power of 0.98Wp per gram of Si.

Thickness 
[µm] 

Pmpp 
[W] 

Isc 
[A] 

Voc 
[V] 

FF 
[%] 

Total cells 315.6 8.8 44.3 80.1 

Module 312.7 9.1 44.2 77.8 

CTM 99.1% 103.2% 99.8% 97.1% 

Before lamination   After lamination After 100 TCs (–40°C/+85°C) After 200 TCs (–40°C/+85°C)
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to be around 95µm. Modules incorporating these 
thin 95µm cells were successfully assembled, 
which allows a leveraging of the reduced mass 
and increased flexibility of these cells, targeting 
lightweight or semi-flexible module applications. 
Module performance measurements and reliability 
testing yielded CTM ratios beyond 99%, a massic 
output of 1Wp per gram of silicon, and full 

compliance with IEC certification standards during 
thermal cycling tests. It was found that a stable high 
efficiency for thin cells sets higher standards in 
process control of the production line (defectivity, 
monitoring, etc.).

Ultrathin heterojunction cells offer industrial cost 
reduction, high performance and innovative module 
applications, ultimately demonstrating that ‘less is 
more’.
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