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Background 
Global PV production continues to be dominated 
by p-type crystalline silicon (c-Si) solar cell 
technologies [1]. In particular, the passivated 
emitter and rear cell (PERC) solar cell design has 
been well established since the 1990s. Although 
PERC is currently the most popular, the GW-level 
adoption of this cell design in mass production 
has taken more than 20 years; this was mainly 
because of the unavailability of high-throughput 
equipment and process technology that could 
effectively passivate p-type surfaces in multi- and 
monocrystalline silicon wafer solar cells. By 2009, 
the development and commercial deployment of 
AlOx for the passivation of p-type surfaces using 
high-throughput deposition schemes disrupted the 
(then mainstream) alloyed aluminium back-surface 
field (Al-BSF) technology, and PERC technology saw 
continuous growth in manufacturing in the 10 years 
that followed.

Today, PERC cells have demonstrated efficiencies 
exceeding 22% in mass production. However, 
as mainstream silicon PV progresses towards 
efficiencies greater than 24%, the challenge lies in 
boosting the solar cell’s open-circuit voltage (Voc) 
beyond 700mV – which is not easy to do for cells 
with screen-printed and fired contacts. Apart from 
the bulk material (which the authors believe can be 

improved), the major voltage loss in most PERC/T 
solar cells arises from metal contact recombination 
at the front and rear surfaces, as well as partially 
from recombination loss at the phosphorus-diffused 
front surface. Passivating contacts using doped 
polycrystalline Si (poly-Si) materials provide an 
elegant solution to all these problems.

The first reports on passivating contacts for 
solar cells date back to the 1970s with structures 
such as SIPOS (semi-insulating polycrystalline 
Si), first used in transistor applications [4–7] 
and subsequently in PV applications [8–12]. The 
latter typically include full-area thin-film stacks 
that passivate the c-Si surface while selectively 
extracting only one type of charge carrier (i.e. 
either electrons or holes). There were only a few 
publications on the application of poly-Si for 
silicon solar cells during the period 1990–2010. 
It is likely that the first commercial application 
of poly-Si contacts was by SunPower in their 
interdigitated back contact solar cells [14].

There has been renewed interest in poly-
Si passivating contact schemes since 2013, as 
evidenced by the excellent results obtained by 
Fraunhofer ISE with TOPCon technology and ISFH 
with POLO technology) [16–20]. These were soon 
followed by reports from other institutes e.g. ECN 
with PERPoly and SERIS with monoPolyTM [22,23]. 
The concept of poly-Si-based passivating contacts 
in c-Si solar cells is 30–40 years old [8–12], and it 
could well be that a known method of deposition 
such as low-pressure chemical vapour deposition 
(LPCVD) was exercised by early adopters because 
of its legacy in microelectronics and the fact that 
tools were readily available. But, as was the case for 
PERC/T production lines, the passivating contact 
cell design now has the following requirements:

1. A production technology platform that has a 
smaller number of steps and enables ultrahigh 
deposition rates (>100nm/min). 

2. A truly single-sided process that can be 
retrofitted to current solar cell lines.

3. Compatible with screen-printed (and fired) 
contacts and bifacial cell designs.
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4. Cost-competitive when compared with standard 
PERC technology (the most important). This 
includes low (or no) maintenance and faster 
return on investment (ROI). 

5.  Sufficiently transparent layers, which can 
therefore be used for the front and rear, and 
which can be used for double-side contacts or all-
back-contact designs. 

This paper presents the monoPoly platform – an 
ideal combination, in the authors’ opinion, of all 
these requirements. The monoPoly technology 
platform is an upgraded PERC/T production 
methodology that incorporates the single-side 
(‘monofacial’) application of a screen-printed and 
fired ‘polycrystalline-based’ passivating contact 
which follows a very lean industrial process flow; 
moreover, the process can be retrofitted to existing 
production lines by adding one high-throughput 
polysilicon tool [26]. 

The monoPoly technology has achieved conversion 
efficiencies beyond 23.5% on M2-size wafers, with 
Voc near 700mV and short-circuit current densities 
(Jsc) of more than 41mA/cm2 because of the semi-

transparent nature of the layers. This technology 
platform is applicable for the rear side as well as for 
the front of today’s silicon wafer solar cells (Fig. 1).

monoPoly layer properties
The monoPoly stack consists of an interfacial 
oxide (SiOx) capped by an n+- or p+-doped poly-
Si layer. The SiOx layer is grown in situ together 
with the in situ-doped poly-Si layer. Here the 
focus is on n+-doped poly-Si (n+:poly-Si) deposited 
by inline high-throughput, single-side plasma-
enhanced chemical vapour deposition (PECVD). The 
properties of these layers are twofold: outstanding 
passivation and semi-transparency.

Outstanding passivation
The surface passivation quality of the interfacial 
SiOx/n+:poly-Si stack on symmetrical n-type planar 
Cz-Si samples is summarized in Table 1. Excellent 
surface passivation properties (both at the c-Si-
surface and the metal-doped poly-Si interface) 
are obtained, and this corresponds well to similar 
reports by other research groups for passivating 
contacts [27–29]. A TEM micrograph of 230nm-thick 
n+:poly-Si is also shown in Fig. 2(a). 

eff at 1×1015cm-3 iVoc at 1 Sun J0 per side at 1×1016cm-3 J0,metal per side J0,metal on solar cell  
 [µs] [mV] [fA/cm2] [fA/cm2] [area-factored]

No deliberate oxidation step 1,680 711 8.9 - -

In situ oxidation  3,080 730 3.0 20 ~2

Figure 1. Schematic of a bifacial monoPoly c-Si wafer solar cell with a rear semi-transparent and 

thin electron-selective passivating contact, and screen-printed (and fired) front and rear 

metallization.

monoPoly layer properties

The semi-transparent monoPoly stack consists of an interfacial oxide (SiOx) capped by an n+- or 

p+-doped poly-Si layer. The SiOx layer is grown in situ together with the in situ-doped poly-Si 

layer. Here the focus is on n+-doped poly-Si (n+:poly-Si) deposited by inline high-throughput 

single-side plasma-enhanced chemical vapour deposition (PECVD). The properties of these 

layers are twofold: outstanding passivation and semi-transparency. 

Outstanding passivation

The surface passivation quality of the interfacial SiOx/n+:poly-Si stack on symmetrical n-type 

planar Cz-Si samples is summarized in Table 1. Excellent surface passivation properties are 

obtained, and this corresponds well to similar reports by other groups for SiOx layers capped by 

n+:poly-Si [20–22]. A TEM micrograph of 230nm-thick n+:poly-Si is presented in Fig. 2(a). 

<Table 1 here>

Table 1. Summary of recombination properties for symmetrical test samples. 

Diffused 
homojunction

Front PECVD ARC 
+ passivation

Screen-printed & fired 
front metal contact

Screen-printed 
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metal contact

Rear PECVD 
passivation

n-type c-Si 
monoPolyTM cell

Semi-transparent monoPolyTM stack: 
iOx + doped poly-Si (p+ or n+)

n-type c-Si 
monoPolyTM cell

Figure 1. Schematic of a bifacial monoPoly c-Si wafer solar cell with a rear semi-transparent and thin electron-selective passivating contact, and 
screen-printed (and fired) front and rear metallization.

Table 1. Summary of 
recombination properties 
for symmetrical test 
samples.
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Figure 3. The rapid progress made in improving cell efficiencies for SERIS’ n-type monoPoly

solar cells. 

Figure 4. Batch I–V characteristics of n-type Cz-Si bifacial nFAB and monoPoly solar cells with 

a rear n+:poly-Si/SiOx passivating contact stack fabricated by industrial PECVD with screen-

printed front and rear contacts (in collaboration with Meyer Burger, Germany). 

“The monoPoly process is an eight-step simple and lean process flow that can be easily adapted 
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Figure 3. The rapid progress made in improving cell efficiencies for SERIS’ n-type 
monoPoly solar cells.

Semi-transparency
It is well known that poly-Si layers are highly 
absorbing as compared to c-Si. This is potentially 
detrimental to a solar cell, since it can lead to 
a loss in generated photocurrent when using 
doped poly-Si at the rear instead of a standard 
homogeneously diffused c-Si for the back-surface 
field (BSF). Fig. 2(b) presents comparisons of 
the quantum efficiency for 1) a standard n-type 
passivated emitter rear totally diffused (PERT) 
cell structure with a homogeneous diffused rear 
BSF (‘PERT’); 2) a cell with a standard LPCVD-
deposited poly-Si layer at the rear (‘poly-Si 1’); 
and 3) a cell with a ‘semi-transparent’ monoPoly 
layer (‘poly-Si 2’). The layer thickness and doping 
levels were kept similar for groups 2) and 3). The 
optimized and semi-transparent poly-Si 2 layer 
at the rear shows a much lower near-infrared 
(NIR) absorption that is on a par with that of the 
standard diffused PERT cell.

Application of monoPoly layers at the 
rear side of n-type bifacial solar cells 
The monoPoly stack fabricated using inline PECVD 
(Meyer Burger, Germany) – when used as the rear 
passivating contact in an n-type bifacial monoPoly 
solar cell – yielded excellent cell voltages of greater 
than 695mV and a peak Voc of 698mV. The rapid 
progress in the development of this technology (as 
a result of clever optimization of the inter-related 
fabrication processes) is highlighted in Fig. 3. Fig. 
4 presents comparisons of the I–V parameters of 1) 
standard n-type PERT (nPERT) cells with a diffused 
BSF; 2) monoPoly cells with and without the 
interfacial SiOx; and 3) after further optimizations. 
The front and rear dielectric passivation for all 

groups was carried out using MAiA – a patent-
protected process (stack) and equipment from 
Meyer Burger.

A reduction of the rear n+:poly-Si thickness 
to ~120nm gave a peak Voc of 697mV together 
with a boost in fill factor (FF) due to improved 
conductivity and uniformity in the poly-Si layer, 
resulting in a peak cell efficiency of 23.5% and 

Figure 2. (a) TEM micrograph of the monoPoly stack. (b) External quantum efficiency (EQE) curves for a standard n-type passivated emitter rear 
totally diffused (PERT) cell with a homogeneous diffused BSF and two poly-Si layers with different optical properties, which affect the near-infrared 
(NIR) parasitic absorption in a cell. Poly-Si 2 is the optimized stack used in the monoPoly technology.
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“The monoPoly process is an eight-step simple and 
lean process flow that can be easily adapted to 
existing PERC/PERT production lines.”
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a batch median of 22.9%. The reduced poly-Si 
thickness will, in addition, lead to savings in 
operational cost and higher throughput in a 
high-volume production environment, both of 
which are important in reducing the cost of cell 
production. If a 100nm/min process is translated 
to high-volume manufacturing, then this would 
mean the deposition of the layer for an entire tray 
in around one minute; this in turn translates to 
a very high throughput, which has not yet been 
achieved in the industry. Further optimization 
of the n+:poly-Si layers is expected to further 
improve the FF values to more than 81.5% with 
a tighter distribution. The authors predict that 
these improvements, together with additional 
optimization of the front emitter and front metal 
pastes, will enable cell Voc values greater than 
720mV and efficiencies above 24% to be achieved 
in mass production.

Table 2 summarizes state-of-the-art I–V 
parameters for lab-type cells (mostly monofacial) 
and provides a striking comparison with 
commercially relevant screen-printed large-area 
(>6”) solar cells (mostly bifacial) with high-
temperature fired contacts. An attempt has been 
made to include selected module results available 
from various resources. This summary is the 
most comprehensive (to the authors’ knowledge) 
at the time of publication. The module powers 
shown in Table 2 needs to be carefully recognized, 
as there is limited knowledge (known publicly) 
about the actual area of the module, cell gaps, 
module technology used and importantly the 
accountability of bifacial gains and method 
of measurement; therefore, these values are 
intended not for comparison purposes but rather 
for literature review.

monoPoly technology platform: retrofitting to 
existing PERC/T production lines
The introduction of passivating contacts to large-scale 
solar cell manufacturing is very appealing but at the 
same time challenging. It requires that the passivating 
contact be thermally stable when metallized with 
screen-printed industrial fire-through pastes. 
Moreover, high-throughput and low-cost deposition 
schemes for the passivating contacts are necessary.

The typical process flow (without a selective 
emitter) for standard pPERC and nPERT is presented 
in Fig. 5 for comparison purposes. The pPERC process 
has a laser step after passivation, whereas the nPERT 
process has an additional diffusion and wet-chemical 
clean to form the rear BSF. (It should be noted that 
the ‘mandatory’ stabilization tool widely used in 
PERC manufacturing lines today has not been 
included.) Furthermore, both processes use standard 
screen-printed metallization with high-temperature 
firing to form the metal contacts.

Over the past two years, SERIS and its key industry 
partners (including those involved in wet chemistry, 
boron diffusion, metal pastes and passivation layers) 
have been fine-tuning SERIS’ proprietary monoPoly 
passivating-contact solar cell technology platform 
for mass production, which has produced a peak 
cell efficiency of 23.5%. The monoPoly process – 
presented in Fig. 5 – is an eight-step simple and lean 
process flow that can be easily adapted to existing 
PERC/PERT production lines, with one additional 
tool required while maintaining the same number of 
total process steps. This passivating contact process 
uses a unique ‘patent-pending’ PECVD process 
and equipment, enabling a streamlined method of 
manufacturing. The same lean process is used for the 
front-side monoPoly application (not shown here in 
this paper). 

Figure 3. The rapid progress made in improving cell efficiencies for SERIS’ n-type monoPoly

solar cells. 

Figure 4. Batch I–V characteristics of n-type Cz-Si bifacial nFAB and monoPoly solar cells with 

a rear n+:poly-Si/SiOx passivating contact stack fabricated by industrial PECVD with screen-

printed front and rear contacts (in collaboration with Meyer Burger, Germany). 

“The monoPoly process is an eight-step simple and lean process flow that can be easily adapted 
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Figure 4. Batch I–V characteristics of n-type Cz-Si bifacial nPERT and monoPoly solar cells with a rear n+:poly-Si/SiOx passivating contact stack 
fabricated by industrial PECVD with screen-printed front and rear contacts (in collaboration with Meyer Burger, Germany).
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monoPoly module results
Having an independently verified module result 
is a testament of a promising commercially 
applicable technology. Since monoPoly is a new 
technology which, importantly, uses a new inline 
PECVD process, it is important to test the cells 
at the module level. The initial results obtained 
using the facilities at Meyer Burger for modules 
with 60 M4-size monoPoly passivating-contact 
solar cells, which yielded a power output of more 
than 345W (certified by TÜV Rheinland), are 
presented here. This power output corresponds 
to an open-circuit voltage of 41.2V, a short-circuit 
current of 10.5A and a fill factor of 79.5% for a 
60-cell module (I–V parameters presented in Table 
3) with a white backsheet and using Meyer Burger’s 
proprietary smart-wire interconnection technology 
(SWCT). The results are outstanding for an initial 
experiment and demonstrate a clear potential 
for the monoPoly platform to achieve a module 
power well above 350W with SERIS’ latest 23.5% 
cells, irrespective of the module interconnection 
technology. It should be noted that the results 

(for both cells and modules) are obtained in pilot 
conditions and are expected to further improve 
when trialled in a mass-production environment.

 Eff. [%] Voc [mV] Jsc [mA/cm2] FF [%] Cell details Module power Module details

Small-area cells (≤ 100cm2)      

Fraunhofer ISE  25.7 [2]  724.9 42.5 83.3 n-type, rear poly-Si – –

ISFH 26.1 [3]  726.6 42.6 84.3 n-type, IBC – –

EPFL 22.6 [13]  719.6 38.8 80.9 p-type, both sides SiCx – –

TU/e Delft 23.0 [15]  701 42.2 77.8 n-type, IBC – –

Georgia Tech 23.8 [21]  711.9 41.23 81.1 n-type, rear poly-Si – –

ANU 24.7k 704.8 42.4 82.6 n-type, rear poly-Si – –

Large-area cells (≥ 234cm2)

ECN + Tempress 22.4 [24]  696 – – n-type, rear poly-Si – –

ISFH 22.3 [25]  714 38.5 81.1 n-type, both sides poly-Si – –

Georgia Tech 21.4 [27]  674 39.6 80.0 n-type, rear poly-Si – –

GCL 22.95a 698 40.3 81.6 n-type, rear poly-Si – –

Jinko  24.2b 724 40.7 82.4 n-type, rear poly-Si 469W (72)f  250.2cm2, 5BB,  
half-cut

Jolywood 23.3c 705 40.8 81.1 n-type, rear poly-Si 330W (60)g/ 390W (72)g  246.21cm2, 12BB,  
full-size

Trina  24.58d – – – n-type, rear poly-Si 355W (60) [30] / 425W (72)h  M4-258.25cm2,  
9BB, half-cut

REC  – – – – – 330W (60)i  M2-244.32cm2,  
5BB, half-cut

LG  – – – – – 340W (60)j/ 400W (72)j  M4-258.25cm2,  
12BB, full-size

SERIS +  
Meyer Burger 23.5e 697 41.4 81.3 n-type, rear monoPoly 345W (60)  M4-258.25cm2,  

SWCT, half-cut
aPresented at PVCellTech 2019, bPress Release Jan. 2019, cPresented at nPV Workshop 2019, dPV Magazine May 2019, ePresented at 9th Silicon PV 2019, fPV Magazine 
Jun. 2019, gPresented at 9th Silicon PV 2019, hTrina website Jun. 2019, iREC N-Peak White Paper (REC website), jPVCellTech 2018 and LG NeON 2 V5 Product 
Brochure, kPVQAT, China 2018. 

Table 2. Summary of global state-of-the-art efficiencies of passivating contact cells and some selected module powers. 

Figure 5. Comparison of the standard PERC and PERT process flows with the simple 
eight-step process flow for the fabrication of monoPoly solar cells, where the oxide and 
doped poly-Si can be deposited by PECVD, LPCVD or APCVD.
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Summary
This paper has presented SERIS’ monoPoly 
technology platform, a comprehensive solution 
for the adoption of passivating-contact solar 
cell technology in the c-Si PV industry. A simple 
eight-step process flow was outlined using well-
established processes, a new industrial PECVD tool 
and high-temperature commercial screen-printed 
metallization. Cell efficiencies of up to 23.5% have 
been achieved on M2-size wafers, paving the 
way for the transfer of monoPoly technology to 
mass manufacturing. Furthermore, initial tests 
demonstrated a module power of 345W for a module 
comprising M4-size 60-cell monoPoly cells. The 
authors predict that next-generation front emitters 
and tailored screen-printed pastes will take the 
technology to 24% cell efficiencies.
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