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Introduction: why simulate 
metal impurities?
Computer simulation has transformed 
industr ies  by al low ing rapid,  low-
cost design iterations during product 
development. The photovoltaic industry 
has benefited from device simulators 
for over 25 years: some early examples 
include PC1D [1,2], AMPS-1D [3,4], 
and SCAPS [5,6]. These tools, especially 
PC1D, continue to have a large influence 
on the photovoltaics industry. While 
existing device simulators achieve their 
intended purpose, an integrated approach 
that considers the interdependency of 
processing and performance is superior. 
Te chnolog y computer-aide d design 
(TCAD) tools provide these integrated 
capabilities. Initial codes were written 
over 30 years ago and tailored to specific 
appl ications in the semiconductor 
industry [7,8]. The PV industry has lagged 
behind the integrated circuit industry 
in the application of process modelling, 
but interest has recently increased with 
the availability of commercial packages 
targeting photovoltaics [9,10]. However, 
care must be taken when adapting existing 
tools, designed for the integrated circuit 
industry, to the PV industry, because of the 
inherently higher defect densities present 
in solar-grade silicon material.

T h e  o p t i m i z a t i o n  o f  t h e  t i m e -
temperature prof i le  of  phosphorus 
di f fusion getter ing (PD G) (Fig .  1) 
presents a useful application of process 
modelling [11]. In the as-grown wafer, 
many metal impurities are distributed 
inhomogeneously as interstitial point 
defects, found throughout the wafer, and 
metal-silicide precipitates, found mainly 

at structural defects such as dislocations 
and grain boundaries [12,13]. During the 
high-temperature plateau and cool-down 
of PDG, most interstitial metals – e.g. 
Cu, Fe and Cr – diffuse and segregate 
to the phosphorus-rich layer, because 
these species have a higher effective 
solubility in the n-type region than in the 
p-type bulk [14,15]. This decreases the 
bulk interstitial concentration below the 
solubility limit at the process temperature, 
causing metal precipitates to dissolve. 
The newly dissolved interstitial atoms can 
then diffuse to the emitter, driving further 
precipitate dissolution. By the end of the 
process, PDG generally reduces both total 
and interstitial metal concentrations and 
thereby increases cell performance. But the 
effectiveness of the gettering step critically 

depends on the time-temperature profile, 
and in particular on the cool-down rate, 
because the segregation coefficient, the 
ratio of the bulk and emitter solubilities, 
and the diffusivity of metal point defects 
are strong functions of temperature.

The PDG process must be optimized 
to address both the total concentration 
and the distribution of metal impurities 
for maximum improvement of minority 
carrier lifetime [14,16–18]. For example, 
tot al  a s -g row n iron concentrat ion 
is a better predictor of lifetime after 
gettering than the interstitial as-grown 
concentration (Fig. 2) [19]. Iron is of 
particular interest in silicon solar cells 
because it is typically the performance-
limiting defect in as-grown materials 
[17,20]. Additionally, the concentration 
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Figure 1. Interplay between point defects and precipitates before phosphorus 
diffusion gettering, during diffusion and during cool-down.
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of total iron, especially in cast silicon 
materials, can be orders of magnitude 
h i g h e r  t h a n  t h e  i n t e r s t i t i a l  i r o n 
concentration [21]. The concentration 
of interstitial iron can be measured 
with relative ease by f lash or thermal 
dissociation of Fe-B pairs and subsequent 
re-measurement of the minority carrier 
lifetime [22]. The total iron concentration, 
howe ver,  including b oth dissolve d 
and precipitated iron, is more difficult 
(and costly) to measure, because metal 
concentrations are often at or below the 
detection limits of readily available mass-
spectroscopy methods.

In a material with high total iron 
concentrations,  for example wafers 
extracted from the top or borders of an 
ingot, large metal-silicide precipitates 

cannot be completely dissolve d in 
many gettering processes, and act as 
re co m b i n at i o n - a c t i v e  d e fe c t s  a n d 
sources of interstitials during subsequent 
high-temperature processing [23,24]. 
Additionally, standard gettering processes 
are less effective in multicrystalline silicon 
(mc-Si) than in monocrystalline silicon 
(mono-Si), as dislocations and grain 
boundaries impede the effective extraction 
of metal impurities in mc-Si material [25–
27]. This contributes to the relatively low 
efficiencies of mc-Si devices compared to 
mono-Si [28].

The impur ity- to-ef f ic ienc y (I2E) 
simulator – a coupled device and process 
TCAD tool – has been developed to 
address the challenges of optimizing the 
time-temperature profile of solar cell 

processing to specific distributions and 
concentrations of iron in as-grown wafers 
[29]. This paper presents a description 
of the I2E simulator, a demonstration 
of the effectiveness of predictive defect 
engineering in industrial applications, and 
a discussion of the online implementation 
of the tool.

“The impurity-to-efficiency 
(I2E) simulator – a coupled 

device and process TCAD tool 
– has been developed to address 

the challenges of optimizing 
the time-temperature profile 

of solar cell processing to 
specific distributions and 
concentrations of iron in 

as-grown wafers.”

Method: predictive defect 
engineering
The I2E simulation tool has been developed 
to predict the impact of as-grown iron 
impurities on final solar cell performance as 
a function of device processing conditions 
and cell architecture (Fig. 3) [29]. The I2E 
simulator operates in 1D to capture the 
essential physics of iron interstitial gettering 
and precipitate dissolution with minimum 
computational expense, and is a compactly 
p ack age d deploy ment  of  pre v ious 
simulation efforts [24,30–34]. The simulator 
consists of three components:

•	 A kinetic model for the diffusion and 
segregation of iron point defects, as well 
as iron-silicide precipitate dissolution 
and growth, during high-temperature 
solar cell processing.

•	 Minority carrier lifetime calculator 
as a function of both interstitial and 
precipitated iron concentration using 
a Shockley-Read-Hall recombination 
m o d e l  f o r  t h e  i r o n  i n t e r s t i t i a l 
concentration and an effective surface 
recombination value at iron-silicide 
precipitate and silicon interfaces.

•	 The industr y standard 1D device 
simulator, PC1D, to determine device 
performance as a function of the device 
architecture, the calculated charge 
carrier lifetimes and the calculated 
phosphorus emitter profile [1,2]. 

The kinetic simulator requires the 
solution of three coupled non-linear partial 
differential equations [29]. The system of 

Figure 2. After standard PDG, the bulk lifetime is affected primarily by the 
as-grown total iron concentration and secondarily by the as-grown interstitial iron 
concentration. Lifetime calculated with I2E simulation of standard PDG.

Figure 3. The I2E simulator predicts the impact of as-grown iron impurities on 
final solar cell performance as a function of device processing conditions and cell 
architecture.
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equations contains steep concentration 
gradients and fast-moving fronts which 
are unstable with many numerical 
methods [35,36]. A solution algorithm 
was developed that can reliably solve the 
system of equations and supports the 
complete dissolution of precipitates. The 
algorithm generates an optimized spatial 
mesh distribution for the device. Execution 
times for practical problems range from 
30 seconds to 30 minutes and depend 
strongly on the resolution of the mesh and 
complexity of the time-temperature profile. 
The simulator has been validated through 
comparisons with experimental data for 
gettering in mono-Si and mc-Si wafers [29].

results: improvements guided 
by predictive defect engineering
The I2E simulator has been successfully 
employed to optimize cell processing 
conditions with academic and industrial 
partners. The success described below 
demonstrates the potential of predictive 
defect engineering and the significant 
performance improvements that can 
be realized through tailoring processing 
conditions to specific material qualities. 

Process tailoring to specific  
impurity levels
Approximately half of the wafers produced 
by ingot casting contain some portion 
of so-called ‘red zones’ – regions of low 
minority carrier lifetime from high residual 
iron concentrations [37]. A few centimetres 
of ‘red zone’ material near the crucible wall 
are removed from the ingot prior to brick 
and wafer sawing, as the lifetime typically 
fails to improve during standard solar cell 
processing. A low-temperature anneal 
(LTA) was applied following phosphorus 
diffusion, to improve the gettering of 
residual iron. Results of the standard and 
optimized processes are shown in Fig. 4. 
Optimized phosphorus diffusion not only 
improved the minority carrier lifetime 
over the entire ingot, but also increased 
the lifetime of the bottom 10% of the ingot 
to an acceptable value, resulting in a yield 
increase. In the future, predictive simulation 
may be employed to optimize solar cell 
processing for different regions of the 
ingot, which have specific distributions and 
concentrations of iron [19].

P-diffusion co-optimization of bulk 
lifetime and throughput
Cell manufacturers must optimize their 
manufacturing lines for both device 
performance and throughput, while 
accounting for varying impurity levels.  
Simulations were conducted for an 
industrial partner to optimize the hold 
temperature, plateau time and cooling 
time of a PDG gettering step for both bulk 
minority carrier lifetime and throughput. 
Many researchers have found that 

extending PDG, by slow cooling or LTA, 
can improve lifetime by reducing the 
concentration of interstitial iron [39–44]. 
More recently, it has been shown that a 
shorter anneal at lower temperatures can 
achieve much of the lifetime improvement 
of extended LTAs by forcing segregation 
of iron to the external gettering layer [45]. 
Learning from these previous efforts, in 
the current study the balance between 
extending the high-temperature hold time 
and/or the cooling time was investigated.

I2E simulations were performed to 
co-optimize lifetime and throughput (Fig. 
5). The initial total iron concentration 
was 3∙1013 atoms/cm3, with 10% of the 
iron present as Fe-B pairs [46] and the 
remainder homogeneously distributed as 
20nm-radius precipitates [23,47]. First, 
the standard process of our industrial 
partner was simulated. Next, attempts 
were made to shorten the standard 
process while maintaining the existing 
hold temperature. Although the total 

process time was reduced in these cases, 
the lifetime provided was insufficient for 
acceptable device performance. Finally, an 
I2E optimized process was suggested that 
provided a sufficient bulk minority carrier 
lifetime for our industrial partner, while 
doubling throughput.

reduction in interstitial iron 
concentration after contact co-firing
To date, significant efforts have been 
made to optimize the time-temperature 
profile of PDG to reduce the impact of 
lifetime-limiting impurities in mc-Si 
material. In contrast, little attention 
has been paid to optimizing the time-
temperature profile of contact firing in 
order to control metal impurities, despite 
it being the final high-temperature step of 
the solar cell fabrication process and the 
last opportunity to manipulate the metal 
impurity distribution. Contact firing is 
usually carried out at peak temperatures 
between 800°C and 900°C, and is therefore 

Figure 4. Industrial application: increased ingot yield and material quality through 
process tailoring to specific impurity levels [38].

Figure 5. Industrial application: P-diffusion co-optimization of bulk lifetime and 
throughput.
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likely to produce the partial dissolution of 
metal precipitates, which can offset the 
reduction in concentration of dissolved 
impurities achieved during PDG [41,48]. 

The dissolution and gettering of iron 
during the co-firing step (Fig. 6) was 
examined with the I2E simulation tool [49]. 
First, a standard time-temperature profile 
of the co-firing step was simulated for a 
typical iron concentration and distribution 
in a P-diffused mc-Si wafer. Simulations 
were carried out for two different 
peak temperatures, 800°C and 900°C, 
followed by a rapid cool-down to room 
temperature. Simulations predict that, 
after firing at Tpeak = 800°C, the interstitial 
iron concentration remains constant (see 
blue bars in Fig. 6). After firing at Tpeak = 
900°C, however, an increased interstitial 
iron concentration is predicted, indicating 
that the dissolution of iron precipitates 
increases at a higher temperature. 

“Experimental results confirm 
that a standard firing step can 
lead to material degradation, 

whereas material performance 
can be maintained or even 

enhanced during an extended 
firing step optimized with I2E.”

Second, I2E simulations were performed 
to optimize the cool-down profile of 
the firing step to allow for effective 
gettering of Fei atoms to the P-diffused 
layer. Simulation results suggest that 
an extended  firing step, including an 
additional low-temperature plateau of 
less than 2 minutes, results in a lower 
interstitial  iron concentration than 
the standard firing step for both peak 

temperatures (see red bars in Fig. 6). For 
Tpeak = 800°C, an extended firing step can 
even result in further reduced interstitial 
iron concentrations after standard PDG.

Simulated trends are confirmed by 
experimental results, shown as black 
dots in Fig. 6. Several sets of p-type mc-Si 
wafers were P-diffused using a standard 
process, then divided into four groups and 
subjected to peak temperatures of 800°C 
or 900°C while following a standard firing 
or extended firing profile in a rapid thermal 
annealing (RTA) furnace. Interstitial iron 
concentrations and electron lifetimes 
were measured on P-diffused and fired 
wafers [49]. Experimental results confirm 
that a standard firing step can lead to 
material degradation, whereas material 
performance can be maintained or even 
enhanced during an extended firing step 
optimized with I2E. 

Discussion: online tool 
implementation
The simulator has been deployed in a 
free web-accessible applet [50], which 
is available for use by the industrial and 
academic communities. The applet’s user 

interface, shown in Fig. 7, allows users to 
configure simulations and interpret output 
data. Required inputs to the tool include 
the time-temperature profile used during 
cell fabrication, the as-grown total and 
interstitial iron concentrations in the wafer, 
and the average precipitate radius. Impurity 
concentrations can be estimated from the 
ingot location of the wafer, or measured 
using a combination of Fe-B dissociation 
and mass-spectrometry methods such 
as ICP-MS [51]. Precipitate radius can 
be estimated as described in the literature 
[18,23]. Though only needed to simulate 
device performance, cell architecture is 
defined by a PC1D parameter (.prm) file.

The applet communicates with a 
dedicated high-performance ser ver 
(maintained by the MIT Photovoltaic 
Research Laboratory in Cambridge) that 
carries out all calculations all input and 
output files after results are printed to 
the user. The applet was initially made 
available to a user group of approximately 
80 individuals. Over 1300 simulations 
have now been performed during the first 
three months of operation, with users 
concentrated in North America, Europe 
and Asia.

Conclusions
The effectiveness of predictive defect 
engineering while using the I2E simulation 
tool has been demonstrated. This tool has 
benefited the photovoltaic community 
by providing the information necessary 
for understanding the interplay between 
material purity, processing parameters, 
cell design and device performance. 
Through the work carried out on this 
project , it has been concluded that 
significant performance and throughput 
improvements can be realized by tailoring 
processing conditions to specific material 
qualities. Additionally, the I2E tool allows 
a rapid optimization of existing processes 
and the identification and evaluation 
o f  n e w  ap p ro a ch e s  w i th  m i n i m a l 
expenditures. Readers are encouraged 
to explore problems of interest with the 
online implementation of the tool.

Figure 6. Industrial application: reduction in iron precipitate dissolution during 
contact co-firing [49].

Figure 7. I2E simulator screenshot after calculations are complete: a plot of the 
results is shown, as well as an output text file.
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