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Introduction
Following the excellent article by Fraunhofer 
ISE on this topic in edition 42 of Photovoltaics 
International [1], this paper discusses in more 
technical detail a number of topics relating to 
modern manufacturing concepts.

Industry 4.0 in PV
The transition to a smart factory is present in the 
roadmap of all manufacturers, SMEs and machine 
builders in every domain, not least PV. Most of the 
PV manufacturing facilities, including those of 
the top manufacturers, have integrated advanced 
automation and remote operation functionalities. 
In the next two years, most fabs will introduce 
automated fab logistic systems with machine 
learning, according to the 2019 International 
Technology Roadmap for Photovoltaic (ITRPV) 
(Fig. 1).

Although there have been relatively significant 
technical advances in machine technology 
and integration of automation technologies, 

manufacturers are still not leveraging the value 
of the data generated in order to provide tangible 
improvements in production. Revamping and 
upgrading all the production equipment to support 
Industry 4.0 features are critical. A brief overview 
of the adoption of these concepts in several 
production facilities is presented next.

The Tongwei Solar Unmanned Production 
Line [2], opened in the last quarter of 2017, is the 
world’s first Industry 4.0 smart-manufacturing 
high-efficiency cell production line; it comprises a 
200MW monocrystalline solar cell production line, 
expanded in 2018 with 400MW HJT technology 
[3]. All the process technologies are automated and 
remotely controlled.

Jinko Solar [4] demonstrated an increase in 
cell efficiency as a result of the introduction 
of advanced automation and the inclusion 
of data analytics in the production life cycle, 
which facilitates a consolidated data-collection 
mechanism, enabling yield traceability, improving 
workflow efficiency and optimizing material 
transportation.

Silicon Module Super League (SMSL) member 
GCL System Integrated Technology (GCL-SI) 
presented the fully automated unmanned module 
assembly workshop in China to test manufacturing 
tools and software, with a test phase lasting about 
two years. Their ambitious targets included a 
50% increase in efficiency, a 21% improvement 
in product quality, a 60% reduction in online 
manpower and a 30% decrease in processing costs. 

SunPower has initiated the move towards lower-
cost manufacturing with the introduction of its 
fab consisting of manufacturing tools with a high 
degree of automation for both high-efficiency cells 
and high-efficiency modules.

While a few examples can be observed, the 
adoption will ultimately depend on the price–
performance ratio, as the return on investment 
(ROI) will be a critical factor for manufacturers.

A survey of manufacturing companies from 
different domains conducted by Ernst & Young 
and Bitkom Research shows that around 80% of 
the companies responded that Industry 4.0 plays 
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“PV production is witnessing a shift in perception, 
moving from conventional manufacturing to smart 
manufacturing with the integration of functionalities 
from multiple domains.”

a part in their roadmaps. While the adoption 
rate was low, around 22%, most of the companies 
were in discussions to incorporate the concepts 
into their infrastructures. The biggest hurdles, 
according to the respondents, were the demand 
for investment, the lack of standards and the 
need for the transformation of the workforce in 
order to acquire the requisite skills to transition 
from having expertise in the field to having 
both software and subject expertise. The Sino-
German Industry 4.0 Demonstration and Training 
programme on intelligent manufacturing and 
Industry 4.0 highlights the need for the training 
programmes to secure the transformation 
of both the manufacturing facility and the 
workforce. Platforms such as RAMI [5] define the 
framework of Industry 4.0 as a step towards its 
standardization.

State of digitalization
PV production is witnessing a shift in perception, 
moving from conventional manufacturing to 
smart manufacturing with the integration of 
functionalities from multiple domains, such as 
the Internet of Things (IoT), data analytics with 
artificial intelligence, and robotics. This integration 
is now accepted as Industry 4.0 [7], a term coined 
by the German strategic programme in 2011, 
and is achieved by the seamless incorporation 
of information technology (IT) and operational 
technology (OT) [8]. Operational technology includes 
the production-floor machines, automation 
units, sensors and actuators, and resources, 
which are now slowly transformed into a digital 
space. Information technology encompasses all 
software-related aspects, including (but not 
limited to) manufacturing execution systems 
(MES), enterprise resource planning (ERP), and 
supervisory control and data acquisition systems 
(SCADA). 

The digital twin, a core component in a self-
learning fab, is seen as one of the most promising 
technologies around the smart factory and the 
concept of Industry 4.0, because both in research 
and in industry it plays the role of bridging the 
physical and digital worlds. Digital twins are 
virtual representations of the physical assets/
machines; they can store and display in real 
time the exact data, values and actions of their 
analogue twins, as well as simulating products, 
machines, etc. that are not yet available. These 
twins should be available for the entire production 
line, i.e. from each individual machine, as well as 
from the product itself. The concept is already 
being used in various industries – such as the 
automotive sector (Daimler, Audi, BMW) and the 
semiconductor sector (Applied Materials, Infineon, 
Texas Instrument, STMicroelectronics) – to make 
production more cost-effective and to accelerate 
the product development. Gartner predicts that 
by 2021, more than half of the big industries will 
have functional digital twins, resulting in a 10% 
improvement in overall effectiveness.

The large set of data coming from the 
heterogeneous data sources and digital twins, 
within the connected factory, will be the biggest 
game changer for the manufacturing sector. 
It opens up the field for analytical models, 
simulation and optimizations, with a move 
towards deriving value from the data, leading 
to significant improvements in cost and process 
efficiencies. Although data is generated from the 
current manufacturing facilities, most of it is not 
converted to intelligence that could transform 
the operations to minimize downtime, decrease 
ramp-up and optimization times, maximize 
production and reduce costs. A gradual evolution 
is required in order to incorporate the self-learning 
features by establishing intercommunication 
between the connected components to enable 

Figure 2. A smart factory visualization.

Figure 1. The high growth rate of automation predicted by the ITRPV 2019 [6].
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diagnosis and prediction of equipment failures, 
self-configuration of parameters and adaptation 
to changing production environmental factors. 
This will facilitate improved flexibility in 
production, traceability, optimization and thereby 
manufacturing productivity.

The factory of the future
The set-up of fully digitalized PV factories requires 
a high degree of robotic workforce, and the 
entire production ecosystem is interconnected. 
The transformation from the physical space to 
the digital one is represented in Fig. 2; it shows 
a production floor with PV equipment and the 
movement of the wafers through the production 
steps. All parameters and measurements are easily 
accessible by those who need them, and alerts are 
sent to operators or to management on multiple 
devices. There should be a common standard for 
underlying communication, so that machines from 
different vendors can be installed hand in hand 
with automation. Single-wafer tracking is also 
necessary in such a factory.

Fig. 3 shows the flow of information, from 
an architectural perspective, with the various 
building blocks of a connected fab. The first layer 
represents a production floor with the processing 
equipment (such as diffusion furnaces and CVDs) 
and measurement devices (such as IV flashers 
and inline sheet resistance measurement for 
diffused emitters). In addition to the machines, 
the production floor is equipped with various 
platforms, such as embedded PCs with connected 
sensors (temperature, humidity, vibration) and 
actuators, which provide contextual information. 
Other sources of data include details about 
maintenance, resources and personnel, all of which 
contribute to the semantic enrichment of the 
digital twin.

The second layer represents the digital twin 
layer. A digital twin can be defined as an evolving 
digital representation of the physical object, which 
captures both current and historical states and 
measurements. It is built with the help of real-
time cumulative data sources and can provide an 
overview of the process/product, insights into 
the performance, etc. Digital twins have standard 
interfaces to communicate with the production 
floor to continually update and reflect the real-
world states.

The architecture also includes the self-learning 
loop; this refers to the cycle of monitoring 
events and data from the production floor 
through the digital twins, analysing the data 
using models, algorithms and simulations, and 
providing feedback to the production floor 
operators and machines. With the digital twin 
layer, statistical patterns can also be detected 
and then further interpreted. For example, Fig. 
4 shows an often-seen correlation between 
a midstream measurement tool which reads 

the IR reflectance of a wafer after phosphorus 
diffusion, and end-of-line cell efficiency. Because 
the IR reflectance is sensitive to the peak dopant 
concentration, the digitalized PV factory, which 
maps this relationship and is capable of cell device 
simulation and diffusion process simulation, will 
have the ability to build a parameterized model 
that recommends steps towards optimizing the 
diffusion process or equipment. The initial phase 
includes a human expert in the loop who provides 
recommendations to the operators. Finally, the fab 
system will offer suggestions for improvements. 
Visualization and integration of tools such as CAD 
are also foreseen to be valuable in presenting a 
real-time view of the machines and the movement 
of the cell through the various process steps.

Figure 3. Architectural overview of Industry 4.0.

“The introduction of standard communication 
technologies and the horizontal integration of 
information flow from several data sources enables 
the possibility to analyse and provide improved 
contextual real-time responses.”

Figure 4. Correlations between the IR reflectance signals on phosphorus-diffused emitters, 
and the end-of-line cell efficiency.
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What is Industry 4.0?
While Industry 4.0 is a culmination of several 
technologies, here an overview is presented 
of the contributing technologies from which 
functionalities will be integrated. In the current 
scenario, there are vertical information silos where 
the data flow is restricted to command and control. 
The introduction of standard communication 
technologies and the horizontal integration of 
information flow from several data sources enables 
the possibility to analyse and provide improved 
contextual real-time responses. The maturity of 
such cohesive interconnections along the entire 
value chain will then lead to the realization of the 
true value of Industry 4.0. The main drivers are:

• Advanced manufacturing technologies: 
this refers to the application of advanced 
technologies in product and process handling 
and also in management, e.g. scheduling, 
logistics and resource management. The use 
of robots and increased automation that will 
eventually be capable of intercommunicating 
help in achieving better production targets and 
in lowering manufacturing costs. 

• IoT and sensor technologies: this refers 
to the networking and the management of 
interconnected sensors, tools and devices within 
the manufacturing facilities; it includes enablers 
such as cloud computing, edge computing and 
data analytics. From the smart factory perspective, 
parallels to the IoT architectural frameworks 
can be drawn in order to create distributed and 
horizontal information sharing possibilities.

• Data analytics: the analysis of the production 
requires a framework to monitor and collect 
relevant data from several sources. There should 
be interfaces to both statistical and machine-
learning-based algorithms. It is foreseen to 
use open-source frameworks, such as Google’s 
Tensorflow or Microsoft’s Cognitive Toolkit. In 
PV, a lot of processing is done using statistical 

tools, such as JMP, which are used for the design 
of experiments and statistical analysis. In order 
to remain compatible with the current tools, 
the digital twins need to interface with them. 
In addition, simulation tools, such as Quokka, 
which can simulate solar cells should also be 
interfaced to run a digital twin of a solar cell in 
order to provide improved simulations.

• Security: currently, the various components of 
security are managed individually. With the use 
of standard communication technologies, it is 
imperative to have security measures in place, 
as the system is more vulnerable to threats. It is 
also essential to have secure access management 
in place. Several companies collaborate with 
cybersecurity experts in the development and 
deployment of such interconnected systems.

Digital twins
As mentioned earlier, digital twins represent the 
digital counterparts of the physical assets. All 
physical things – machines, automation, materials 
and solar cells – can, and should in the future, 
have a digital twin. Digital twins are classified into 
several types [9]: product twin, process twin, entire 
production line twin or performance twin. The 
functionality is designed as per the requirements 
of the production plant. The different types 
of digital twin have different requirements: a 
machine requires sensors and actuators, while a 
product consists of different parameters.

One of the most important points in modelling 
is granularity (the level of detail). It is important 
to show some pragmatism and avoid academic 
completeness; incorporating every single detail can 
consume unnecessary computing power, slowing 
down the structure and possibly rendering real-
time processing unfeasible. A digital twin requires 
a visualization tool that is clear and concise for 
both managers and operators. The facility should 
have the infrastructure to handle the real-time 
processing of large volumes of data. It should 
include interfaces to several algorithms that can 
model the data.

A clear advantage of using a digital twin is 
that the product can be ‘produced’ before it is 
actually physically created. This simulation of 
the product can then be used to carry out a wide 
variety of tests and put it through its paces. Fig. 5 
shows a digital twin of a solar cell rendered using 
COLLADA, sourced from an AML file (described in 
the next section). For the production machines, a 
real-time view of the working components and the 
parameters can be easily made.

Digital twin: data model
With the various types of digital twin defined, two 
examples are considered here in the context of 
PV manufacturing: a ‘product twin’ corresponding 
to a solar cell, and a ‘process twin’ corresponding 

Figure 5. Visual representation of the digital twin of a solar cell.
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to a piece of processing equipment, i.e. an inline 
wet-chemistry tool or a diffusion furnace. A digital 
twin of the solar cell enables us to analyse the cell 
through the various process steps. This further 
facilitates the possibility to optimize parameters 
in order to ensure that all the following cells fit 
the final quality evaluation criteria. The possibility 
to simulate virtual cells in real time speeds up the 
technology development cycle, as the number of 
development iterations can be reduced.

With regard to a product twin example, the 
design phase consists of identifying the relevant 
parameters to represent the asset; thus, the 
digital twin consists primarily of an underlying 
data model with all the relevant attributes of the 
solar cell. This structured representation allows 
information to be exchanged across components 
and systems. The data model includes metadata, 
process data, measurements and related contextual 
information. The life cycle of the product needs to 
be understood and captured in the digital twin.

A tight coupling of the physical object and the 
digital twin is established through communication 
interfaces and update mechanisms. Fig. 6 shows 
the modelling components in the realization of a 
digital twin. The physical assets here are the solar 
cell (‘product’) and an inline wet-chemistry process 
tool (‘process’). All the parameters to be modelled 
are selected.

The modelling language adopted here is 
AutomationML, an emerging standard for 
the description of digital twins [10]: this is a 
standardized mark-up language for modelling 
and unifying all information used by engineering 
tools. AutomationML covers plant topology, 
geometry and kinematics, logic information, 
reference and relations, and referencing of other 
formats. It is an open standard and uses the XML 
format for programming. The language can be 
used to map and describe entire production lines 
in their hierarchy; it can also capture the inter-
relationships between the several components. 
AutomationML comes with an in-built tool 
for conversion to the OPC UA data format. In 
addition, it can be interfaced to modelling tools 
for geometry and kinematics information, such as 
COLLADA and PLCopenXML.

The AutomationML editor provides a user-
friendly interface in which it can be clearly 
programmed. A sample of the view of the digital 
twin data model for a solar cell designed using 
AutomationML using the editor is shown in Fig. 7, 
along with the corresponding XML schema. The 
figure indicates an instance hierarchy of a solar 
cell; metadata of the cell, the measurements made, 
the process steps performed and details relating to 
the process steps are included. The AML file can 
be used for sharing all the information relating to 
the solar cell twin; this file can then be converted 
to objects which can be accessed to update the 
parameters in real time or near real time.

Digital twin: communication and interfaces – 
how to talk to machines
A critical component is the connectivity in order 
to ensure reliable and seamless connection of the 
digital twin to the heterogeneous data sources. 
While some factories have central information 
control software, such as MES, many facilities 
do not. Digital twins aim to use standard 
communication interfaces and to also facilitate a 
horizontal sharing of information in cases where 
MES is unavailable. Creating a single digital twin 
from a manufacturer might not be difficult, but 
having a standardized way to model and access 
several assets from different manufacturers 
is a challenge. For PV/semiconductor 

Figure 6. Communicating with the digital twin.

“A critical component is the connectivity in order to 
ensure reliable and seamless connection of the digital 
twin to the heterogeneous data sources.”

Figure 7. AutomationML and XML schema.
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production equipment, ISC has identified three 
communication categories adopted by the machine 
builders. The categories include:

• SEMI PV2 (SECS/GEM) [11]  
The integration of the standards SEMI SECS-
II (E5), GEM (E30) and HSMS (E37), which are 
already in use in semiconductor manufacturing, 
was recommended as the foundation for host 
communication throughout the PV industry. The 
SECS/GEM standard establishes the protocol 
for the communication link between a host 
computer and the machines. The host can 
issue remote commands to retrieve parameters, 
perform process program functionalities (such 
as run recipes), monitor material movement, etc. 
The information retrieved from the machines 
is classified into: 1) status variables – current 
parameters and measurements of the processing 
machine; 2) alarms – all the errors and 
warnings raised which indicate a non-optimum 
functioning of the machine; and 3) events – 
the possibility to monitor events and relevant 
machine parameters so that the host can 
continually get reports in a publish–subscribe 
mode. Additional functionalities include the 
possibility of using data spooling features to 
ensure no loss of information in the case of 
connectivity issues, defining and monitoring 
limits of parameters, and tracing functionalities.

• OPC UA [12]  
This is the open-source communication 
protocol developed by the OPC foundation 
for machine to machine communication. It 
is a service-oriented architecture, supports 
multiple platforms and has an integrated 
information model and security features. The 
protocol includes the following specifications: 
data access (DA), historical data access (HDA), 
alarms and events (A&E), XML data access 
(XML-DA), data exchange (DX), complex 

data (CD), security, batch, express interface 
(Xi) and unified architecture (UA). The main 
advantage of the OPC is its acceptance and use 
in several associated manufacturing sectors, 
such as automation, robotics, process control and 
manufacturing.

• Proprietary protocols 
Several machines still follow proprietary 
communication protocols in the retrieval 
of data by a central server. This requires the 
development of drivers, wrappers and other 
translation tools to communicate with the 
machines and retrieve data in the required 
format. A standardized approach will reduce 
the amount of reworking that such proprietary 
protocols impose, but until the definition of 
the standards and widespread adoption occurs, 
workarounds will need to be in place.

• IoT and related protocols 
For sensors and actuators, standard 
communication over TCP/IP is adopted. The 
highly adapted MQTT [13] transport protocol, 
which uses a publish/subscribe architecture, 
is suited to devices with smaller footprints. 
REST interfaces refer to the scalable architecture 
which facilitates communication over the 
hypertext transfer protocol (HTTP) to establish 
communication from an asset to a central web 
server.

An accepted standard for machine 
communication and a digital twin representation 
in the PV industry are needed in order to enable 
successful implementation of smart factories. 
Machine builders will have to offer this along with 
their machines and digital twin representation. 
SECSGEM or OPC UA are candidates for this 
standard, while AutomationML is a possibility for 
the digital twin representation.

Flexible factories
The digital transformation of the factory and the 
merging of all the data sources open up other 
interesting use cases of designing a flexible PV 
production line; for example, special cell types 
for certain niche products, or products with 
known variable demand, can be produced in this 
‘FlexFab’. (Work on the concept of such a flexible 
factory is funded by the German Federal Ministry 
for Economic Affairs and Energy within the 
framework of the FlexFab project.) The changeover 
processes must be minimized and well known (e.g. 
necessary cleaning processes). The preparation of 
machines and the instruction of operators must 
be automated. The production schedule must be 
optimized automatically by a scheduler, as shown 
in the example in Fig. 8.

The requirements and design phase for this are 
twofold. The first is to identify commonalities and 

Figure 8. Example of a scheduler for a flexible production line: input fields for different cell 
types that can be produced at the site (top left) and orders for the fab with due dates (top 
right). The optimum schedule is then generated (bottom), and necessary information is 
sent to machines and operators.
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differences in the technologies; this is established 
through several experimental batches to identify 
sources of contamination, possibilities of reuse of 
process steps, etc. A detailed design of experiments 
will allow the detection of conflicting and 
constructive factors.

The second is the possibility to remotely control 
and configure the parameters of the processing 
equipment. With the framework described above, 
ISC is working on the networking aspect for 
communicating with machines. A central control 
software is used to control and monitor equipment. 
In addition to control, the booking of machines is 
also handled by the software (presented later in 
this paper; see Fig. 14). On the arrival of a request 
to change the cell technology in a production line, 
all the required dependencies are checked and the 
machines are reconfigured to adapt to the new 
technology requirements. The basic requirement 
for doing this is to have all the machines 
connected and store all the necessary information 
in one place.

Self-learning factory
Imagine a factory that gets better all by itself… 
efficiencies steadily rise, small variations of 
production parameters are done automatically, and 
the fab achieves optimum production conditions 
unassisted. Take, for example, the introduction 
of a new silver paste for contact formation: the 
diffusion, printing and firing conditions are 
changed for some thousand wafers in a running 
production, and the optimum conditions and 
potential of the new paste are determined within 
hours. Fig. 9 shows a self-learning loop moving 
between the production floor and the digital data 
it generates to build models that will lead to the 
development of several applications.

The digital twins provide the interfaces to 
access the real-time and historical data from 
the machines; these data need to be converted 
to knowledge that can be leveraged. Traditional 
systems, such as ERPs, have rule-based routines 
in place. The production environment, however, 
is non-stationary and evolving; it is therefore 
necessary to build models that can learn and adapt 
in real time. The data analysis cycle starts with the 
identification of relevant data; the data are cleaned 
and filtered, and the appropriate statistical and 
learning models are then applied to the data. The 
inference obtained from the data is subsequently 
used in the decision making, for example in 
parameter optimization. Some of the applications 
include:

• Predictive maintenance. This is a disruptive 
approach [14] to performing maintenance, 
with the normal operations and parameters 
being continually monitored. Simulations and 
the ‘memory’ of the digital twin can be used 
to predict when a component or components 

within the production line will be faulty or 
even fail. It is also possible to avoid expensive 
on-site maintenance by experts from the 
manufacturer. If the company allows an online 
connection to the manufacturer, they can now 
use the digital twin to remotely service the 
machines. The likelihood of machine downtimes 
is estimated on the basis of load and usage 
patterns and environmental factors in order 
to reduce the mean time between failures 
(MTBF); estimates based on statistical and 
machine-learning models are provided. Errors 
in the equipment are anticipated by modelling 
(artificial neural networks), leading to early 
detection of failures, which means that warnings 
of abnormal patterns can be issued at an early 
stage. According to Deloitte [15], predictive 
maintenance will: 1) reduce the maintenance 
planning time by 20–50%; 2) diminish total 
maintenance costs by 5–10%; and 3) increase 
equipment uptime and availability by 10–20%.

• Simulations and optimization. A digital twin 
can be connected to simulation tools used 
by scientists in analysing production data 
and measurements. Simulation tools include 
Quokka3, PV Lighthouse and PC1D, which can 
be programmed to take in the data generated 
from the digital twin. While the implementation 
in the current state requires the development 
of wrappers and translation tools, a better 
integration is foreseen. By leveraging the 
digital twin data, improved simulations can be 
performed, thus mirroring the real-world status 
more accurately. Cost savings in the integration 
of simulation tools with the digital twin will be 
tremendous, and entire process chains can be 
simulated before production actually begins.

Figure 9. Applications based on learning from data.

“It is necessary to build models that can learn and 
adapt in real time.”



• Root cause analysis. During the ramp-up phase, or 
during the introduction of newer technologies into the 
production line, several optimization cycles that are 
cost and time intensive are required. Identification of 
the source of errors or performance deviations can be 
performed with, for example, multivariate regression 
models.

• Quality assurance. The quality of the cell/module at 
the end of production can be ensured throughout the 
process line on the basis of the models.

ISC is also working on self-learning factories in 
the framework of the SelFab project, funded by the 
‘Ministerium für Wirtschaft, Arbeit und Wohnungsbau 
Baden-Württemberg’ (Ministry of Economic Affairs of 
Baden Württemberg state).

Lab 4.0 at ISC Konstanz
In the development and integration of Industry 4.0 
concepts for the factories, ISC’s first step was the 
development and integration of a prototype using the 
same technologies, but on a smaller scale, i.e. in a solar 
cell research lab. The lab has all the production and 
process equipment for the complete fabrication of a 
solar cell; it also has the machines required for module 
development. Automation tools, such as loaders and 
unloaders, are not available, given the low throughput 
needed in a lab environment.

A pilot implementation provides an opportunity to 
explore specific aspects such as equipping the lab with 
sensors, exploring the standards for communication to 
the existing machines, identifying the gaps, collecting 
data and exploring analytical tools. The first phase was 
a survey of the equipment, resources and requirements 
for identifying the key areas of development and 
the possible challenges. The labs were fitted with 
environmental sensors, such as temperature, humidity 
and pressure sensors; Fig. 10 shows the historical trend 
of some of the values recorded in the labs.

Process equipment tools selected for communication 
include a diffusion furnace, a CVD, a firing furnace, an 
IV flasher and an inline wet-chemistry processing tool. 
Because some of the equipment was not PV2 compatible, 
upgrades were necessary in order to standardize the 
communication with all the equipment. This is an 
integral part, as it requires the development of one 
solution that can be extended to all the equipment. 
In the case of equipment that cannot be upgraded to 
support PV2, alternative communication strategies have 
to be in place. 

The initial prototype uses the open-source 
Thingsboard platform [16] to visualize the data, device 
management and access management. A PostGreSQL 
database is the back-end database for storing all the data 
retrieved from the equipment and sensors. Fig. 11 presents 
a sample snapshot of connected devices in the lab.

The graph in Fig. 12 shows a sample overview of the 
trend in the machine parameters over a period of time. 
The data originate from the firing furnace and display 
the trend of temperature values of the furnace and the 
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drive velocity. Fig. 13 shows some sample trends 
in the pressure values recorded from the inline 
wet-bench processing tool. This demonstrates the 
amount of information available for the analysis 
and study of cross-correlations, variance, etc. 
between parameters and final cell performance.

To integrate the concepts of a flexible factory, 
a web-based software management tool was 
developed. Referred to as the ibook (ISC booking 
tool), the front end offers a user interface for 
the managers and the operators to access all the 
information about the machines and booking 
information, as well as providing the ability 
to plan experiments (RUNs). In the case of 
the latter, the easy-to-use web interfaces have 
templates to choose cell technology, machine 
parameters, recipes, cell parameters, etc. here; 
for every RUN, all the associated data will be 
assimilated (see Fig. 14). The back end is again 
a PostGreSQL database. In addition, iBook 
will include information about personnel, 
maintenance statistics, details of the wafer (e.g. 
manufacturer, dimensions), etc. Communication 
between the iBook and the digital twin is 
planned through REST interfaces. The digital 
twin uses the ibook interface to retrieve 
metadata parameters and review information 
relating to booking times.

Impact of Industry 4.0
Industry 4.0 brings together a cohesion on all 
levels, linking investors, suppliers, consumers and 
other persons with a vested interest, creating 
a connected ecosystem. With the continuous 
stream of data, a degree of transparency is brought 
to the system, and everyone involved is able to 
take a proactive role in the functioning of the 
ecosystem. A shift from the vertical information 
silos to an interconnected open system will result 
in a transformation of not only the business 
models but also the way in which collaborative 
environments can be developed (Fig. 15).

Summary and outlook
A change in perspective is brought about 
by digitalization and Industry 4.0 in the 
manufacturing space. An adaptive system capable 
of learning from the environment and providing 
real-time recommendations and optimizations 
is the logical next step in the industrial 
evolution. Moving from rigid information silos 
to combining data sources to generate useful 
knowledge would result in improvements in 
several areas of manufacturing, focusing on the 
self-x functionalities of self-optimization, self-
maintenance and self-configuration.

Incorporating Industry 4.0 into PV cell and 
module production will lead to significantly less 
downtime and improved efficiency through the 
higher level of process and inter-process control. 

(a)

(b)

Figure 10. Environmental parameters – digital records.

Figure 11. A view of several connected machines and sensors. MT1 and MT4 are 
characterization rooms in the ISC lab.

Figure 12. Machine parameter trends for the firing furnace.

Figure 13. Machine parameters for the inline wet-bench processing tool.
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Figure 14. With the use of ibook (‘ISC booking tool’), experiment planning, including group planning (a) and scheduling (b), is easily possible, as well as 
assignments to the operators. The earlier-described machine planning in a FlexFab is based on this system.

“Incorporating Industry 4.0 into PV cell and module 
production will lead to significantly less downtime 
and improved efficiency through the higher level of 
process and inter-process control.”

However, standards for communication interfaces 
(PV SECS/GEM or OPC UA) and digital twin 
representations (AutomationML) are essential (the 
authors’ assumptions in brackets). Cell/module 
manufacturers will need to request appropriate 
interfaces and digital twin representations from 
their machine suppliers.
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Figure 15. Impact of Industry 4.0. 


