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Introduction
The passivated emitter and rear cell 
(PERC) is a very promising candidate for 
next-generation industrial-type screen-
printed silicon solar cells. The International 
Technology Roadmap for Photovoltaics 
(ITRPV) forecasts the introduction of rear-
passivated cells into volume production 
within the next two years [1]. Numerical 
simulations using typical solar cell 
parameters indicate that the conversion 
efficiency of screen-printed PERC cells is 
up to 1.5% (absolute) higher than screen-
printed solar cells with full-area aluminium 
back surface field (Al-BSF) owing to 
the reduced rear surface recombination 
velocity Srear and an increased rear surface 
reflectance Rb [2,3]. Excellent conversion 
efficiencies above 20.0%, with record values 
of up to 20.2%, have been demonstrated by 
several companies and research institutes 
for large-area p-type PERC solar cells with 
screen-printed metal contacts [4,5,6,7]. 
Several production-type tools for the 
deposition of rear passivation layers are 
already available on the market [8,9] or 
under development [10,11]. In particular, 
rear passivation layers consisting of 
aluminium oxide (AlOx) have attracted 
considerable attention because of their 
excellent surface passivation properties. 
Effective surface recombination velocities 
below 10cm/s have been demonstrated [12] 
for Al2O3 layers deposited by atomic layer 
deposition (ALD) after a high-temperature 
firing step which is typically carried out for 
screen-printed metal contacts.

“In addition to excellent 
electrical properties, it is 
important that the AlOx 

deposition process achieve high 
deposition rates.” 

However, in addition to excellent 
electrical properties, it is important that 
the AlOx deposition process achieve 
high deposition rates and hence a 
high throughput, which enables a low 
cost of ownership. Plasma-enhanced 
chemical vapour deposition (PECVD) 
pro cesses  apply i ng  an i nduc t ively 
coupled plasma (ICP) form a high-
density plasma (HDP), yielding electron 
densities of around 1×1012cm-3 [13], 
a n d  h e n ce  a l l o w  h i g h  d e p o s i t i o n 
rates of up to several nanometres per 
second [14].  ICP PEC VD processes 
have been extensively investigated for 
the deposition of dielectric insulation 
and encapsulation layers consisting of 
SiOx [15,16] or SiNx [16,17,18]. The 
focus at that time was on applications in 
microelectronic manufacturing, such 
as a final passivation layer or a diffusion 
barrier. One important feature of the 
ICP process is that the plasma density 
can be varied independently of the ion 
energy, which is typically lower than 30eV. 
Hence, an independent optimization of 

the deposition rate versus the reduction 
of surface damage of the silicon wafer 
is possible. In recent years, Singulus 
Technologies has commercialized the ICP 
process for the deposition of SiNx anti-
reflective layers of silicon solar cells using 
their Singular tool platform [14].

This paper presents an investigation 
of the application of the ICP process, to 
our knowledge for the first time, to the 
deposition of AlOx layers. The ICP AlOx 
layers are deposited using a laboratory-
type tool at ISFH. The surface passivation 
properties of the resulting ICP AlOx layers 
are analyzed, and the SiNy capping layer 
deposition is optimized in order to improve 
the surface passivation quality after firing. 
For rear passivation, ICP AlOx/SiNy layer 
stacks are applied to large-area PERC solar 
cells with screen-printed metal contacts, 
resulting in excellent conversion efficiencies 
of up to 20.1%. Moreover, the electrical 
and optical properties of the ICP AlOx/
SiNy layers are analyzed by measuring and 
modelling the internal quantum efficiency 
(IQE) and the reflectance of the resulting 
PERC solar cells. 

AlOx deposition using an ICP 
process
The ICP AlOx layers are deposited in 
a laborator y-type cluster tool (Von 
Ardenne CS 400 P) at ISFH; the tool 
consists of a load lock chamber, a transfer 
chamber and several PECVD deposition 
chambers ,  including the ICP AlO x 
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chamber as shown in the photograph in 
Fig. 1(a). A schematic drawing of the ICP 
AlOx deposition chamber is given in Fig. 
1(b). A coil outside the vacuum chamber 
inductively excites the plasma using a high-
frequency generator set at a frequency of 
13.56MHz. Trimethylaluminium (TMAl) 
is used as the precursor gas, and oxygen 
(O2) as a reactive gas. The silicon wafer is 
transported on a carrier and electrically 
heated during the AlOx deposition. 

Depending on the process parameters, 
high static deposition rates of up to 5nm/s 
are obtained while maintaining low ion 
energies below 30eV. The thickness of 
the resulting ICP AlOx layers is varied by 
adjusting the time of the deposition process. 
Afterwards, the ICP AlOx passivation layers 
are covered with a PECVD SiNy capping 
layer (SiNA/Roth & Rau or Singular/
Singulus) in order to improve the firing 
stability and the optical reflectivity when 
applied to PERC solar cells.

Surface passivation properties 
of ICP AlOx layers
In order to determine the surface 
passivation properties, ICP AlOx layers 
capped with a PECVD SiNy layer (SiNA/
Roth & Rau) are deposited on both 
sides of p-type 1.4Ωcm float zone (FZ) 
wafers, and a typical firing process is 
carried out in a conveyor belt furnace 
with peak temperatures of 910°C. The 
minority charge carrier lifetime is then 
measured using the quasi-steady-state 
photoconductance (QSSPC) technique 
at a carrier density of 1×1015cm-3. Using 
the measured lifetime τeff, the maximum 
surface recombination velocity Smax 
(attributing the whole recombination to 
the wafer surface) can be calculated from 
the equation Smax = W/(2 × τeff), where W is 
the mean wafer thickness.

“QSSPC measurements reveal 
excellent effective lifetimes of 

up to 2ms.”
The QSSPC measurements reveal 

excellent effective lifetimes of up to 2ms, 
corresponding to surface recombination 
velocities (SRVs) Smax below 10cm/s for 
ICP AlOx/PECVD SiNy layer stacks after 
firing, as shown in Fig. 2. The error bars in 
Fig. 2 refer to the minimum and maximum 
values of the effective lifetimes measured 
at different positions on the same wafer, 
revealing a good homogeneity of the 
surface passivation across the wafer. A 
moderate dependence of the SRV on the 
AlOx layer thickness can be seen, with a 
minimum value of 7.5±1.5cm/s at an AlOx 
thickness of 15nm.

The next step is to evaluate a SiNy 
capping layer applied by the Singular tool 

Figure 1. (a) The laboratory-type cluster tool (Von Ardenne CS 400 P), consisting 
of a load lock chamber, a transfer chamber and several process chambers, including 
the ICP AlOx deposition chamber. (b) Schematic of the ICP AlOx deposition 
chamber – plasma is inductively excited with a coil outside the vacuum chamber 
using TMAl and O2 as process gases, and the wafer is transported on a carrier and 
heated during deposition.

Figure 2. Effective carrier lifetimes and corresponding surface recombination 
velocities (SRVs) as a function of the ICP AlOx layer thickness, measured for 
1.4Ωcm float zone (FZ) wafers. The results indicate lifetimes of up to 2ms and SRVs 
below 10cm/s for ICP AlOx layers covered with a PECVD SiNy layer (SiNA/Roth & 
Rau) after firing. 

Figure 3. Effective lifetime of 20nm-thick ICP AlOx layers capped with an ICP SiNy 
layer (Singular/Singulus) on 156mm ×156mm, 2Ωcm Cz wafers. After firing, the 
effective lifetime strongly increases with increasing thermal budget prior to SiNy 
deposition.
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[14] from Singulus Technologies, which 
uses an ICP plasma source. The ICP AlOx 
layers applied in this study have a layer 
thickness of 20nm. It has previously been 

reported that an appropriate annealing of 
ALD Al2O3 layers prior to SiNy deposition 
reduces blistering and hence improves 
the passivation quality after firing [19]. 

The Singular tool is designed so that a 
pre-heating chamber heats the silicon 
wafers prior to the ICP SiNy deposition. 
Accordingly, the thermal budget of the pre-
heating chamber prior to SiNy deposition is 
varied in order to optimize the passivation 
quality of the ICP AlOx/ICP SiNy layers. 
The passivation layer stacks are deposited 
on both sides of 156mm × 156mm, 2Ωcm 
Czochralski (Cz) wafers. Industrial-type 
wafers are used in this case in order to 
allow a direct comparison of the resulting 
test wafer temperatures such as would 
occur in industrial cell processing.

B e fo re  f i r i n g ,  o n l y  a  m o d e r ate 
dependence of the effective lifetime on 
the thermal budget is seen, as illustrated in 
Fig. 3. After firing at 900°C, however, the 
dependence changes: a strong increase of 
the effective lifetime with increasing thermal 
budget is found, and an optimum lifetime 
of around 600µs is observed. The light 
microscope images in Fig. 4 confirm that 
the increased thermal budget reduces the 
blistering of the ICP AlOx/ICP SiNy layers 
after firing, which explains the improvement 
of the effective lifetime resulting from the 
improved surface passivation of the ICP 
AlOx/ICP SiNy  layer stack.

Application of ICP AlOx/SiNy 
layer stacks to high-efficiency 
screen-printed PERC cells
Rear surface passivation using ICP AlOx/SiNy 
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Figure 4. Light microscope images of the ICP AlOx/ICP SiNy-covered wafer 
surfaces of Fig. 3 after firing, for thermal budgets (prior to SiNy deposition) of: (a) 
420, (b) 560, and (c) 840. A greater thermal budget reduces the blistering (white 
dots) and hence improves the surface passivation after firing.

Figure 5. Schematic of the PERC solar cells with screen-printed front and rear 
contacts, and the application of an ICP AlOx/SiNy rear passivation stack. 
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layer stacks was implemented for industrial-
type high-efficiency PERC solar cells with 
screen-printed metal front and rear contacts. 
The process sequence of the PERC solar 
cells is very similar to the process sequence 
reported in detail in Dullweber et al. [20], so 
only the most important process steps will be 
highlighted here.

Industry-standard 156mm × 156mm, 
boron-doped Cz silicon wafers with 
resistivities of 2–3Ωcm and starting 
thicknesses of 200µm are used. Before 
texturing and phosphorus diffusion, a 
dielectric protection layer is deposited 
on the rear side of the wafer, leaving the 
rear side planar and non-diffused. A 
homogeneously doped phosphorus emitter 
with a sheet resistance of about 60Ω/
sq. is employed. Next, an AlOx layer is 
deposited on the rear side by means of the 
ICP deposition process as described earlier. 
Two different ICP AlOx layer thicknesses 
of 20nm and 30nm are evaluated and 
compared to a 10nm-thick ALD Al2O3 
layer as the reference.

A PECVD SiNy (SiNA/Roth & Rau) 
capping layer is then deposited on top 
of the AlOx passivation layer at the rear 
in order to improve both the optical 
reflectivity and the surface passivation 
qual ity.  Alternatively,  an IC P SiN y 
(Singular/Singulus) capping layer with 
a thermal budget of 900 is deposited. 
The emitter is covered with a SiNx anti-
reflective coating. The dielectric layer 
stacks at the rear are locally ablated by 
laser contact opening (LCO) in order 
to form local line openings [21,22]. Line 
contacts are chosen instead of point 
contacts, since line openings facilitate 
the formation of a deep and uniform 
local Al-BSF [23]. The Ag front contacts 
are deposited by a print-on-print (PoP) 
screen-printing process, resulting in 
a finger width of around 70µm and a 
shadowing loss (including bus bars) of 
around 6.2% [24]. The Al rear contact is 
formed by full-area Al screen printing, in 
which a commercially available Al paste 
designed for local contacts is applied.

A schematic drawing of the cross section 
of the resulting PERC solar cell is shown 
in Fig. 5, and photographs of the front and 
rear sides are shown in Fig. 6. The contact 
lines are clearly visible on the cell rear side 
as well as on the rear passivation layer.

“The PERC solar cell with a 
30nm ICP AlOx layer achieves 
an independently confirmed 

conversion efficiency of 20.1%.”
Table 1 summarizes the I-V parameters 

of the best solar cells of each split group. 
The PERC solar cell with a 30nm ICP 
AlOx layer achieves an independently 

Figure 6. Photographs of the front and rear sides of a PERC solar cell with 20.1% 
conversion efficiency. Whereas the front side is very similar to industry-standard 
screen-printed solar cells, the rear side shows the ICP AlOx/SiNy passivation layer 
and the local line contacts.

Rear side AlOx layer thickness Voc Jsc FF  η
passivation [nm] [mV] [mA/cm2] [%] [%]

ICP AlOx/PECVD SiNy 30 655 39.0 78.8 20.1*

ICP AlOx/PECVD SiNy 20 657 39.1 77.8 20.0*

ICP AlOx/ICP SiNy 20 649 39.4 77.5 19.8

ALD Al2O3/PECVD SiNy 10 656 39.2 76.9 19.8*

Al-BSF N/A 638 37.1 79.1 18.7

* Independently confirmed at Fraunhofer ISE CalLab.

Table 1. I-V parameters measured under standard testing conditions (STC) 
of 156mm × 156mm p-type Cz PERC silicon solar cells. The ICP AlOx/SiNy-
passivated cells achieve conversion efficiencies of up to 20.1%.

Figure 7. IQE and reflectance of the PERC solar cells of Table 1. Srear values of 
80–150cm/s and Rb values of 90–92% are obtained by analytical modelling, 
demonstrating the excellent electrical and optical parameters of the ICP AlOx/SiNy 
passivation stacks.
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confirmed conversion efficiency of 20.1%, 
which is one of the highest efficiencies 
reported so far for industrial solar cells 
of this type. The high values of Voc 
(655mV) and Jsc (39.0mA/cm2) indicate 
the excellent rear side passivation by the 
ICP AlOx/PECVD SiNy stack. The PERC 
solar cells with the 20nm ICP AlOx layer 
exhibit similar I-V parameters for both 
PECVD (SiNA/Roth & Rau) and ICP 
SiNy (Singular/Singulus) capping layers. 
The reference PERC solar cell with ALD 
Al2O3/SiNy rear passivation displays 
similar solar cell parameters as well.

Table 1 also includes the I-V parameters 

of an industry-standard screen-printed 
solar cell with full-area Al-BSF and a 
conversion efficiency of 18.7%. As can 
be seen by comparison, the significant 
efficiency improvement of the PERC solar 
cells compared to the full-area Al-BSF 
cell is mainly due to improved Voc and Jsc 
values as a result of the improved electrical 
and optical properties of the rear side.

IQE analysis of screen-printed 
PERC cells with ICP AlOx/SiNy 
rear passivation
Fig. 7 shows the IQE and reflectance 

of the PERC solar cells in Table 1. The 
rear passivation layer mainly affects the 
reflectance and IQE in the wavelength 
range of 900nm to 1200nm. As can be seen 
in Fig. 6, the PERC solar cells show almost 
identical IQE and reflectance values in this 
particular range. By analytical modelling 
it is possible to obtain effective rear 
surface recombination velocities Srear of 
80–150cm/s and internal rear reflectances 
Rb of 90–92%, showing the excellent 
electrical and optical properties of the 
ICP AlOx/SiNy passivation stacks; these 
properties are almost identical to those of 
the ALD Al2O3/SiNy stack.
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Figure 8. The ICP AlOx process is currently being transferred from the ISFH lab tool (left) to the Singular production tool (right) 
for the commercialization of this novel passivation layer during 2012.
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“The ICP process has been 
demonstrated to be very well 

suited to the deposition of high-
quality AlOx passivation layers.”
Conclusions and outlook
A novel deposition technique has been 
developed for AlOx layers, in which 
an ICP PECVD deposition process is 
applied, allowing high deposition rates of 
up to 5nm/s. Experiments on test wafers 
have demonstrated an excellent surface 
passivation quality of the resulting ICP 
AlOx layers, with surface recombination 
velocities after firing reduced to 7.5cm/s 
when applying a SiNy capping layer. A 
strong increase of the passivation quality 
was achieved by appropriate annealing 
of the ICP AlOx layer in the pre-heating 
chamber of the Singular tool prior to 
SiNy deposition. Industrial-type PERC 
solar cells with an ICP AlOx/SiNy rear 
passivation stack applied have exhibited 
conversion efficiencies of up to 20.1%, 
which is one of the highest conversion 
efficiencies reported so far for these types 
of solar cell.

An IQE analysis revealed an excellent 
rear surface recombination velocity of 
110±30cm/s and a high internal optical 
reflectance of 91±1%. The rear surface 
recombination velocity Srear of 100cm/s 
of the PERC cells was in good accordance 
with the effective surface recombination 
velocity Smax of 10cm/s for test wafers, 
taking into account the additional 
contribution of the local Al contacts with 
surface recombination velocities Smet of 
around 400cm/s [23]. To our knowledge, 
this is the first time that the ICP process 
has been demonstrated to be very well 
suited to the deposition of high-quality 
AlOx passivation layers. The ICP AlOx 
process is currently being transferred 
from the ISFH lab tool to the Singular 
production tool of Singulus Technologies 
in order to commercialize this novel 
passivation layer during 2012. 
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