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Introduction
The polysilicon passivating contact has received 
a lot of attention from many research institutes 
and industries because of its excellent surface 
passivation and compatibility with industry-standard 
processes. Passivating-contact solar cells with a 
selective p+ emitter yielding 25.8% efficiency, and 
with an interdigitated back contact (IBC) structure 
yielding 26.1% efficiency, have been demonstrated by 
Fraunhofer ISE [1] and ISFH [2], respectively. 

Inspired by those research achievements, various 
manufacturers, such as Jolywood, Trina Solar and 

GCL, have spared no effort in commercializing 
the passivating-contact solar cell by transferring 
the technology from the lab to mass production; 
record efficiencies of 23.85% [3], 24.79 [4], 24.58% 
[5] and 23.04% [6] on a full-size scale have been 
reported. However, achieving both low contact 
recombination and low contact resistivity for n+ 
poly-Si passivation is still a subject of ongoing 
research in industry with fire-through Ag paste.

As an n-type solar cell and module manufacturer, 
Jolywood focuses on the development of n-type 
bifacial passivating-contact solar cells, combining 
findings from previous developments [7,8]. An 
average efficiency of 23.85% and a record efficiency 
of 24.21% with an open-circuit voltage Voc of 
711.6mV have been achieved at the cell level by 
optimizing the doping profile of n+ poly-Si and 
p+ emitter. These results may provide some new 
guidance for cell efficiency improvements in mass 
production. The reliability of cells and modules is 
further investigated by performing light-induced 
degradation (LID), harsher (>3 times) LID, and light 
and elevated temperature-induced degradation 
(LeTID) tests. The results show that no degradation 
occurs in the cells and modules. 

This paper is an extended version of a recent 
publication for the 37th EU PVSEC in 2020 [9].

Passivating-contact solar cell 
technology
Fig. 1(a) and (c) show the schematic diagram 
and process flow of passivating-contact solar 
cells processed on full-area (251.99cm2) n-type Cz 
substrates with a resistivity of ~1Ω•cm. The cells 
feature a homogeneous boron emitter with BBr3 
diffusion and tunnel-SiOx/n+ poly-Si structure, 
doped ex situ by industrial phosphorus ion 
implantation. The tunnel-SiOx is grown in situ 
by thermal oxidation in a low-pressure chemical 
vapour deposition (LPCVD) furnace and capped by 
intrinsic poly-Si (i-poly) of thickness greater than 
100nm. The cells are screen printed with 12 busbars 
on both sides, as shown in Fig. 1(b).

The impacts of a phosphorus in-diffusion (P-tail) 
profile and a boron emitter profile on passivated 
current density (J0,pass), metal recombination 
current density (J0,metal) and corresponding contact 
resistivity (ρc) are systematically investigated. All 
of these are closely related to the performance of 
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the solar cell. The results will provide some new 
guidance for cell efficiency improvement in mass 
production and R&D.

Rear passivating-contact optimization
The rear-side SiOx/n+ poly-Si layers are screen 
printed with fire-through (FT) Ag paste. It has 

been reported that the FT paste could locally spike 
through the SiOx/n+ poly-Si and make contact 
directly with the c-Si bulk during firing, resulting 
in very high recombination and resistive losses 
[10,11]. To strike a balance between passivation and 
contact quality, the impact of the ‘P-tail’ (formed 
by phosphorus atoms diffusing from the n+ poly-Si 
into the n-Si substrate) on surface passivation and 
contact properties is systematically investigated. 

As illustrated in the electrochemical capacitance–
voltage (ECV) profiles in Fig. 2(a), passivating-
contacts with various P-tails, marked N1–N4, are 
obtained by gradually increasing the annealing 
temperature (Tanneal). To avoid parasitic current 
flowing through several conductive layers, the 
n+ poly-Si layer and P-tail in the non-contacted 
regions are etched before the ρc measurement via 
the transmission line method (TLM) [12] or the Cox-
Strack method [13]. However, selective removal of 
the n+ poly-Si layer and the P-tail is too complicated 
and not cost effective for industrial implementation.

To solve this problem, an improved TLM structure 
(see inset in Fig. 2(b)) developed by Jolywood is 
utilized to measure the contact resistivity of 
Ag/n+ poly-Si/SiOx/c-Si, which features a tunnel-
SiOx/n+ poly-Si layer around each finger and which 
is isolated by creating grooves with a depth of more 
than 1.5µm in order to eliminate unwanted current 
paths during TLM measurements. The measured 
value is a ‘lumped’ value comprising the contact 
resistivity of Ag/n+ poly-Si, the tunnel resistivity of 
n+ poly-Si/SiOx/c-Si, and the contact resistivity of the 
Ag/P-tail. The ρc values obtained via the improved 
TLM structure for N1–N4 are summarized in Fig. 2(b).

Fig. 2(a) reveals an initially flat distribution of P 
dopants in the n+ poly-Si layer, which then drops 
sharply from the poly-Si/SiOx interface (indicated 
by the dashed grey line) to c-Si; the P-tail within 
the c-Si becomes deeper as a result of more P 

Figure 1. (a) Schematic diagram of the structure of an n-type bifacial passivating-contact solar cell. (b) Photographs of the front and rear sides of 
a bifacial passivating-contact solar cell fabricated at Jolywood. (c) Process sequence of a passivating-contact solar cell, used in industrial mass 
production.

(a)                                                                             (c)                   

(b)

(a)

(b)

Figure 2. (a) ECV profiles for phosphorus in the tunnel-SiOx/n+ poly-Si structure 
annealed at various temperatures. (b) The corresponding contact resistivities, 
measured by the improved TLM structure. Inset: schematic of the improved TLM 
structure for the ρc measurement of Ag/n+ poly-Si/SiOx/c-Si. The dashed/dotted lines in 
the figure are visual guides.
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atoms diffusing from the poly-Si into the bulk at 
increasing temperatures Tanneal. The sample N1, with 
a very shallow P-tail in the Si bulk, exhibits high-
quality passivation (~6fA/cm2) but poor contact 
performance. The upper-limit ρc could be around 
6.5mΩ•cm2.

The rear surface used in this work, formed by 
acid-based single-side etching, is much rougher 
than an alkaline polished rear surface; thus, J0 is 
slightly higher than for an alkaline polished surface. 
A moderately leaky profile, such as that exhibited 
by N2, with slightly more in-diffusion, helps reduce 
ρc and maintain  J0,pass (7fA/cm2). However, as Tanneal 
continues to increase, more dopants migrate 
into the c-Si bulk. Although ρc drops further to 
~1.0mΩ•cm2, the value of J0,pass increases significantly 
from 14fA/cm2 to 21fA/cm2 (see N3 and N4 in Fig. 3).

The value of J0,metal is extracted by fitting J0,metal 
vs. metalization fraction, which is measured from 
Ag-etched lifetime samples [14]. As shown in Fig. 
3, J0,metal drops initially with increasing Tanneal and 
gradually saturates at a similar level to that of 
N2. Unlike the results of Stodolny et al. [13] from 
ECN, J0,metal of the passivating contact decreases 
linearly with increasing in-diffusion depth. These 
results indicate that, in order to balance the 
surface recombination and contact properties, a 
moderate doping tail (~0.15µm) within the c-Si bulk 
is sufficient to avoid the high recombination and 
contact resistance caused by metal spikes. With the 
optimization, excellent passivation characteristics of 
a SiOx/n+ poly-Si structure, with J0,pass ~7fA/cm2, 
 J0,metal ~247fA/cm2 and low ρc ~ 1.3mΩ•cm2, are 
obtained simultaneously on a planar surface.

Front p+ emitter optimization
In order to find a suitable p+ emitter, four diffusion 
profiles, represented by B1–B4 with different peak 
concentrations (Cpeak) and junction depths, were 
developed by varying the diffusion process. The 
doping profiles measured by ECV are depicted in 
Fig. 4(a); the sheet resistances of the B1–B4 profiles 
measured by a four-point probe (4pp) are 85, 95, 70 
and 50Ω/sq., respectively. Profiles B1 and B4 initially 
show very similar values for Cpeak, and likewise B2 
and B3, until the junction depths for profiles B1–B4 
gradually increase. 

As shown in Figs. 4 and 5, the B1 profile, with a 
high Cpeak and shallow junction, exhibits low non-
metallized recombination (J0,pass ~27fA/cm2) but 
poor contact properties (J0,metal ~1,025fA/cm2 and 
ρc~2.8mΩ•cm2). The latter is attributed to the Ag-Al 
paste spiking too much into the p+ emitter (perhaps 
close to the p-n junction) and forming a centre of 
high recombination during metallization. 

A high Cpeak and a deep junction profile, such as 
that of B4, could provide a better shielding of the 
high recombination at the metal contacts  
(J0,metal ~541fA/cm2) and enable low contact resistivity 
(ρc ~0.9mΩ•cm2), while J0,pass is dramatically 
increased. A lightly doped Cpeak and a deep junction 

“To balance the surface recombination and contact 
properties, a moderate doping tail within the c-Si 
bulk is sufficient to avoid the high recombination 
and contact resistance caused by metal spikes.”

Figure 3. The corresponding non-metallized and metallized passivation properties for a 
passivating contact with different annealing temperatures. The dashed/dotted lines in 
the figure are visual guides.

(a)

(b)

Figure 4. (a) Boron-doping profiles of the p+ emitter with various diffusion processes. 
(b) The corresponding contact resistivities are measured using the standard TLM 
structure. The dotted line in the figure is a visual guide.
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depth, for example demonstrated in the B2 and B3 
profiles, enables both a low J0,pass and a low J0,metal. 

The studies carried out indicate that the values 
of J0,metal and ρc of the p+ emitter are more related 
to junction depth than to peak concentration. A 
homogeneous p+ emitter with a low Cpeak and a deep 
junction depth is preferable in order to balance the 
J0,pass, J0,metal and ρc. Compared with the B3 profile, 
the B2 profile shows the merits of reduced Auger 
recombination loss, free-carrier absorption (FCA) 
and lower diffusion temperature, and is therefore 
used in Jolywood’s passivating-contact solar cells.

Mass-produced passivating-contact cells
The distribution of the front-side efficiency for a 
batch of 20,000 solar cells in a single production 
line is shown in Fig. 6, which features a very narrow 
efficiency distribution and thus good process 
stability. The average efficiency in mass production 
is 23.85%. The record cell in Jolywood’s production 
line was independently measured by a third party 
to have a front-side efficiency of 24.04% and a Voc 
of 703.5mV; detailed parameters are summarized in 
Table 1.

Power loss of the passivating-contact cell
To identify options for further improvement of cell 
performance, a power loss analysis of the record 
solar cell is performed by applying the FELA [15] 
approach implemented in Quokka3. As shown in 
Fig. 7, with the help of a passivating contact the 
recombination and resistive losses for the SiOx/n+ 

poly-Si are minor. The optical loss, on the other 
hand, reduces the efficiency by about 2.93%, which 
is mostly dominated by the imperfect light-trapping 
loss (1.55%). After the optical loss, the p+ emitter is 
the second largest component (1.13%), among which 
the passivated recombination of the p+ emitter 
contributes the most (0.59%). 

Enlightened by the power loss analysis, further 
optimization of the optical losses (such as reflection, 
electrode shading and light-trapping losses) was 
carried out. Upon incorporating a better optimized 
p+ emitter and rear n+ poly-Si/SiOx into the cells, 
a record passivating-contact solar cell with 24.21% 
efficiency and 711.6mV Voc was achieved.

“The values of J0,metal and ρc of the 
p+ emitter are more related to 
junction depth than to peak 
concentration.”

 Jsc [mA/cm2] Voc [mV] FF [%] η [%]

Calibrated* 40.44 703.5 84.5 24.04

*Independently confirmed by the third-party Metrology Institute. 

Table 1. Record efficiency of an n-type passivating-contact solar cell in mass production.

Figure 5. Corresponding passivated and metallized passivation properties for the p+ 
emitter with the doping profiles. Dashed/dotted lines in the figure are visual guides.

(a)

(b)

Figure 6. (a) Front-side efficiency distribution for a batch of over 20,000 cells fabricated 
on the production line. (b) Third-party calibrated I–V curves of the calibrated cell. 
These figures have been reproduced using the raw data.
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Passivating-contact module technology
N-type modules, as shown in Fig. 8, were fabricated 
with Jolywood’s passivating-contact silicon solar 
cells. A front-side I–V measurement was performed 
under standard test conditions (STC) with the 
rear side covered by a non-reflective black mask. 
Average output powers of 415W and 420W were 
obtained for the n-type bifacial passivating-
contact modules with 72 full-size cells and 144 
half-cut cells, respectively. The bifacial modules 
show the merits of a high bifaciality of ~85%, a 
low degradation coefficient of less than –1.0% for 
the first year and –0.4% annually thereafter, a low 
temperature coefficient of –0.32%/K, and a high 
weak-illumination response.

A full-black module developed by Jolywood 
utilizing a black backsheet on the rear side is shown 
in Fig. 8(c). Compared with a double-glass module, 
the weight can be reduced by ~30% by replacing 
the rear glass with a black backsheet. The full-black 
module features excellent aesthetics and light 
weight, which is perfect for building-integrated PV 
(BIPV) applications.

Reliability of passivating-contact cells 
and modules

LID test
In the production line, cells are randomly selected 
to monitor the LID after the I–V measurement. The 
test conditions for LID are five hours light soaking 
under 1-sun light intensity at 55°C. The relative 
efficiency variation is defined by (ηbefore – ηafter)/ηbefore, 
where ηbefore is the initial efficiency of cells before 
the LID test, and ηafter is the final efficiency of the 
cells after the LID test.

The relative efficiency variation results for the 
whole of 2019 for Jolywood’s bifacial passivating-

contact solar cells tested under LID conditions are 
summarized in Fig. 9. The relative efficiency changes 
are all negative for n-type passivating-contact solar 
cells, which indicates that rather than degrading the 
initial efficiency, the LID test treatment is beneficial 
in terms of improving the efficiency of these types 
of solar cell.

Figure 7. Detailed power loss analysis for the solar cells in mass production with an average efficiency of 23.85%.

“Upon incorporating a better optimized p+ emitter 
and rear n+ poly-Si/SiOx into the cells, a record 
passivating-contact solar cell with 24.21% efficiency 
and 711.6mV Voc was achieved.”

Figure 8. Images of n-type bifacial passivating-contact module products with (a) 72 full-
size cells, and (b) 144 half-cut cells. (c) Full-black monofacial module with 132 half-cut 
cells.
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Harsher LID test 
The reliability of n-type passivating-contact solar 
cells is tested under much harsher conditions, such as 
higher temperatures (≥220°C) and higher illumination 
intensities (≥5 suns). This test equates to more than 
three times more severe than a typical LID test. 

Fig. 10 shows the variation in the J–V parameters 
of the cells before and after the harsher LID test. 
It can be seen that after being processed with the 
harsher LID test, the efficiency of the cells increased 
by 0.17%, which is mainly due to the improvement 
in Voc and FF. Consequently, the n-type passivating-
contact solar cells exhibit excellent reliability, even 
under more stringent LID tests.

LeTID test
LeTID tests are performed on n-type bifacial 
passivating-contact modules with 72 full-size cells. The 
modules are treated in the dark chamber at 75°C with 
1A current soaking, each LeTID cycle lasting 96 hours. 
Modules utilizing cells without having undergone the 
severe LID test show non-degradation after the first 
cycle of the LeTID test, and minor degradation (<1.0%) 
after the third cycle. The performance of the modules 
recovered and showed positive gains after the 4th 
cycle, as shown in Fig. 11(a). For those modules using 
solar cells processed with the harsher LID test, no 
degradation was observed, even after four cycles of the 
LeTID test, as shown in Fig. 11(b). 

Figure 9. Light-induced degradation (LID) of n-type passivating-contact solar cells, using an illumination intensity of 1 sun and a cell temperature of 55°C.

Figure 10. J–V parameters for n-type passivating-contact solar cells before and after the harsher (>3 times) LID tests.

(a)

(b)

(c)

(d)
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It is interesting to observe that modules treated 
under severe LID test conditions are more stable 
throughout these four cycles. It is proposed that excess 
hydrogen in the bulk silicon after the firing process 
can form hydrogen-bonded defects during the first 
cycle of the LeTID test. These defects, however, can be 
dissociated during long-duration carrier injection and 
annealing, which accounts for the recovery of modules 
after the fourth cycle. On the other hand, if the 
modules have already been subjected to the harsher 
(>3 times) LID test, the excess hydrogen in the bulk 
silicon becomes depleted, which keeps the solar cells in 
the modules free from hydrogen-related degradation 
in the subsequent LeTID test.

Summary
This paper has reported the latest results obtained 
at Jolywood for full-size n-type bifacial passivating-
contact solar cells using cost-effective processes 
comprising phosphorus ion implantation and 
LPCVD with in situ oxidation. In this work, the 
impact of a P-tail profile and boron emitter profile 
on the recombination currents in the non-metalized 
and metallized areas and the corresponding contact 
resistivity were systematically investigated.

The results indicated that a moderate 
doping tail (~0.15µm) within the c-Si bulk in a 
passivating contact is sufficient to avoid the high 
recombination and contact resistance caused 
by metal spikes, and that a homogeneous p+ 
emitter with low peak concentration and deep 
junction depth is preferred in order to balance 
the passivation and contact performance. With 
optimized fabrication processes, an average 
efficiency of up to 23.85% with an excellent Voc of 
703.5mV was obtained in the production line.

An implementation of the FELA approach in 
Quokka 3 revealed that optical factors (2.93%) are 
responsible for the largest power loss, and that 
recombination and resistive losses at the p+ emitter 
are the second largest limitation for the record cell. 
With further process optimization, the best record 
efficiency in R&D of 24.21% was achieved, featuring 
a Voc of 711.6mV. 

The reliability tests showed that n-type bifacial 
passivating-contact solar cells and modules are 
free from LID and are minimally impacted by 
LeTID, which consisted of light/current soaking 
and annealing. Rather than degrading performance, 
the light soaking and annealing processes have a 
positive effect on Voc and FF, which contribute to 
an improvement in efficiency of n-type bifacial 
passivating-contact solar cells and modules. 
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