PV Modules

Premium
Photovoltaics International Papers, PV Modules
Ammonia, a gas which has its roots in livestock farming, can have potentially detrimental effects on the lifetime and reliability of PV modules. Research into the degree of corrosive effects of this gas on modules is of utmost importance for any module manufacturer guaranteeing a certain specific lifetime for their product. Researchers from SCHOTT and SCHOTT Solar together with the DLG (Deutsche Landwirtschafts-Gesellschaft/German agricultural society) developed a test design involving humidity, temperature and ammonia gas. This design is based on permeation testing and microscopic analysis of samples aged under a controlled atmosphere or from outdoor exposure. Additionally, a highly accelerated test is presented which allows screening materials for use in PV modules within 84 hours. An Arrhenius type of model is used to calculate the acceleration factors involved. Based on this model, the proposed test design is equivalent to more than 20 years of outdoor exposure in the rural environment (in Central Europe).
Premium
Photovoltaics International Papers, PV Modules
Savvy solar panel manufacturers understand that wringing excess costs from every stage of the value chain is simply the price of admission to today’s crowded market. They also know that reliability and quality are not only critical for delivering on a 25-year warranty promise, but also drive the true cost of energy over the lifetime of the system. This factor is becoming increasingly apparent, especially in industrial- and utility-scale solar projects, as they age and the power output of many lower quality systems begins to degrade to unexpected levels. Many of those systems used UL or IEC certifications as a proxy for good reliability. Unfortunately, UL certification is primarily concerned with user safety, and even the IEC requirements are not rigorous enough to ensure trouble-free operation throughout the system lifetime. High reliability and quality require testing and manufacturing methods that go far beyond the certification tests.
Premium
Photovoltaics International Papers, PV Modules
Solar enterprises will each be faced with the occasional surplus or lack of solar modules in their lifetimes. In these instances, it is useful to adjust these stock levels at short notice, thus creating a spot market. Spot markets serve the short-term trade of different products, where the seller is able to permanently or temporarily offset surplus, while buyers are able to access attractive offers on surplus stocks and supplement existing supply arrangements as a last resort.
Premium
Photovoltaics International Papers, PV Modules
This paper, the fourth in a series covering cost modelling studies for photovoltaics [1–3], examines a new approach to module assembly based on the concept of ‘supersized’ 1kW PV modules. Using supersized modules (1.6m × 3.8m) and integrated microinverters, this novel approach has the estimated potential to save utility solar installations nearly $0.50/Watt. The paper will conclude with a detailed cost and resource case study comparing two 40MW module lines, one employing ‘solar breeder’ technology and the other producing conventional-sized modules.
Premium
Photovoltaics International Papers, PV Modules
This paper presents fluorescence detection as a new tool for the investigation of the degradation of EVA. The superior sensitivity of the set-up contained herein allows an early assessment of the changes of the EVA after only 20 hours of damp-heat exposure. A newly developed scanning system allows the spatially resolved inspection of entire PV modules. Degradation of the encapsulants was detectable after two years’ outdoor exposure, as was the effect of cracks in c-Si cells, which coincide well with cracks made visible by electroluminescence.
Premium
Photovoltaics International Papers, PV Modules
This paper describes a methodology used to establish reliability of a CIGS thin-film photovoltaic module component based on identification of a failure mode through product thermal-cycling. The initial observation of the failure is described as part of a larger reliability program that progresses from failure mode and effect analysis through a test-tofailure program that has an objective of understanding the ultimate consequence of specific applied stresses on product performance. Once the specific failure mode was discovered, four means of characterizing the mode were applied and are discussed: tensile testing and material analysis, computer modelling, coupon rapid thermal cycling, and mechanical fatigue testing. This work identified the relevant root cause for failure and facilitated a materials change, which itself was subjected to an accelerated testing program to quantify the improvement and determine success of the design. The means of verifying success included meeting an endurance thermal-cycle limit for a collection of samples and subjecting corrected designs to a mechanical fatigue test, where the correlation between thermal cycle and mechanical fatigue were compared using Weibull analysis.
Premium
Photovoltaics International Papers, PV Modules
Encapsulant materials used in PV modules serve multiple purposes. They physically hold components in place, provide electrical insulation, optically couple superstrate materials (e.g., glass) to PV cells, protect components from mechanical stress by mechanically de-coupling components via strain relief, and protect materials from corrosion. To do this, encapsulants must adhere well to all surfaces, remain compliant, and transmit light after exposure to temperature, humidity, and UV radiation histories. Encapsulant materials by themselves do not completely prevent water vapour ingress [1-3], but if they are well adhered, they will prevent the accumulation of liquid water providing protection against corrosion as well as electrical shock. Here, a brief review of some of the polymeric materials under consideration for PV applications is provided, with an explanation of some of their advantages and disadvantages.
Premium
Photovoltaics International Papers, PV Modules
Cell interconnection is recognized as the most critical process with respect to module production yield. If the process is not carefully controlled, cell cracking and subsequent breakage may occur. Many manufacturers promise breakage rates below 0.3-0.5% on their tabber-stringers, which applies for cells above 160-180µm thickness that are free from initial cracks. In real production, this figure strongly depends on materials, process parameters and throughput. This paper outlines some approaches that should be taken to avoid high levels of breakage in the cell interconnection process.
Premium
Photovoltaics International Papers, PV Modules
Solar enterprises will each be faced with the occasional surplus or lack of solar modules in their lifetimes. In these instances, it is useful to adjust these stock levels at short notice, thus creating a spot market. Spot markets serve the short-term trade of different products, where the seller is able to permanently or temporarily offset surplus, while buyers are able to access attractive offers on surplus stocks and supplement existing supply arrangements as a last resort.
Premium
Photovoltaics International Papers, PV Modules
Power measurements of PV reference modules can, at standard testing conditions (STC), show tolerance deviations of up to ±3%, greatly affecting the maximum power output and thereby lowering the overall energy yield of the installation. Despite some existing technical problems, there is an urgent need on the part of the photovoltaic community to achieve more accuracy in power measurements in respect to the ever-growing production volumes. Some approaches being undertaken to carry out high-quality power measurements are addressed in this paper. The deviation from an ideal simulator performance are shown and discussed for two types of simulators, with reference to the most relevant parameters: irradiance level, deviation from homogeneity, spectral mismatch and temporal stability.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
May 21, 2024
Sydney, Australia
Solar Media Events
May 21, 2024
Napa, USA
Solar Media Events
May 22, 2024
London, UK