PV Modules

PVI Paper
Photovoltaics International Papers, PV Modules
Because it leads to higher efficiencies than aluminium back-surface field (Al-BSF) cells, passivated emitter and rear cell (PERC) technology is attracting more and more attention in the industry and gaining market share. However, PERC technology brings new challenges with regard to the phenomenon of degradation: some monofacial/bifacial PERC cell modules were found to demonstrate much higher power degradation than Al-BSF cell modules after damp-heat (DH: 85°C and 85% relative humidity RH, 1000h) and potential-induced degradation (PID: 85°C and 85% RH, –1,500V, 96h) tests, which will be the focus of this paper.
PVI Paper
Photovoltaics International Papers, PV Modules
The realistic measurement of solar cells is key for the whole PV industry, as accurate information about cell power is one of the most important aspects in solar cell purchase and PV module design.
PVI Paper
Photovoltaics International Papers, PV Modules
Different types of PV backsheet provide modules with varying levels of protection in warm, humid conditions. Haidan Gong, Minge Gao and Yiwei of Wuxi Suntech’s PV test centre detail the results of research undertaken to better understand the properties of different backsheet materials in tropical conditions.
PVI Paper
Photovoltaics International Papers, PV Modules
Half-cell modules are gaining an increasing market share because of their potential for increasing module power without requiring any changes to cell technology. However, it has emerged that different cell separation technologies can produce similar electrical performances of the half cells, yet lead to an entirely different mechanical behaviour of the cells.
PVI Paper
Photovoltaics International Papers, PV Modules
The market share of bifacial solar modules is rising, because of the additional power yields of up to 20% per year, which reduce the levelized cost of electricity (LCOE). Many manufacturers have bifacial PV modules in their portfolios, with a majority of them employing bifacial passivated emitter and rear cell (PERC+) technology. In this paper, it is shown from the results of studies that rear-side-related potential-induced degradation (PID) effects can occur in addition to the conventional front-side shunting type (PID-s).
PVI Paper
Photovoltaics International Papers, PV Modules
The recent trends in crystalline Si-based bifacial cell development are having a major impact on interconnection technology. This paper presents an overview of various bifacial interconnection technologies.
PVI Paper
Photovoltaics International Papers, PV Modules
This paper reports on the latest advances in passivated emitter and rear cell (PERC)-based shingled solar cell activities at Fraunhofer ISE. The approach taken is to fabricate 6" host wafers from Czochralski-grown silicon and separate them after metallization and contact firing into bifacial p-type shingled passivated edge, emitter and rear (pSPEER) solar cells.
PVI Paper
Photovoltaics International Papers, PV Modules
Solar modules with half-size solar cells have the potential for becoming the new standard. The cutting of cells leads to electrical recombination losses at the cell level, which are more than compensated by reduced resistive losses as well as by current gains at the module level. At the same time, the cutting process must be optimized to avoid mechanical damage that could lead to cell breakage in the module. Module design opportunities for hot-spot protection, shading resistance and energy yield optimization are presented in this paper. Module power can be increased by 5–8%, which justifies the investment in additional equipment for cell cutting, stringing, lay-up and bussing. Half-cell technology is highly attractive for new solar module production capacity.
PVI Paper
Photovoltaics International Papers, PV Modules
Bifacial cells and modules collect light falling not only on the front side of the panels but also on the rear; this additional collection of light increases the total absorbed irradiance, and accordingly the generated current. One of the remaining questions is: what temperature do bifacial solar panels operate at compared with monofacial panels? The extra light absorption at the rear will heat up the modules more, but at the same time, the parasitic heating by the absorption of infrared light is reduced, because infrared light is mostly transmitted through the glass–glass panels. In this paper, different bifacial and monofacial cell and module architectures are considered for the calculation of the energy spectra for all heat loss and absorption processes and the effective heat input. The heat transfer coefficients and the heat capacities of modules with different rear panels are given. Actual module temperatures for different layouts are presented and discussed for low- and high-irradiance (diffuse/direct) conditions in the Netherlands.
PVTP Paper
Design & Build, Plant Performance, Power Generation, PV Modules, PV Tech Power Papers
In an exclusive preview of a forthcoming paper in PV Tech Power, LONGi Solar and Huawei present their analysis from a bifacial project in the Middle East.

Subscribe to Newsletter

Upcoming Events

Solar Media Events, Upcoming Webinars
March 9, 2021
Solar Media Events
March 17, 2021
Solar Media Events
April 13, 2021
Solar Media Events
April 20, 2021
Solar Media Events
June 15, 2021