Requires Subscription: Photovoltaics International Archive

Characterization of damage and mechanical strength of wafers and cells during the cell manufacturing process

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Ringo Koepge, Research Scientist , Fraunhofer CSP; Frank Weget, Senior Staff Expert, Hanwha Q CELLS GmbH; Sven Thormann, Hanwha Q CELLS GmbH; Stephan Schoenfelder, Fraunhofer CSP

Minimizing the breakage rate of silicon wafers and cells during production has been one of the key issues for reliable and productive solar cell manufacturing. However, the root causes of damage or breakage,
as well as the mechanical characteristics of manufacturing processes, are not completely understood. In the study described in this paper the change in mechanical strength and the damaging of wafers and cells was analyzed in an industrial cell manufacturing line in order to detect critical process steps and handling operations in certain processes such as etching, diffusion, screen printing and firing. An analysis and discussion of damage sources is presented which offers more insight than the conventional study
of breakage rate that is mostly performed by cell manufacturers. In a systematic experimental study, 19 different locations in the production line were investigated. The mechanical strength of 800 wafers or cells at different points in the cell line was subsequently determined using the four-line bending test and the statistical parameters for the Weibull distribution. It was discovered that dramatic changes in strength
occur at different process steps because of the change in defect structure; there were also found to be several positions at which no further damage was detected. This method of investigation can therefore be used as
a fingerprint of a cell line in respect of yield and breakage rates. Individual processes can be identified that indicate high damage potential, although the actual breakage could occur in a subsequent process step.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy82MTVmZmQ5NDY3LWNoYXJhY3Rlcml6YXRpb24tb2YtZGFtYWdlLWFuZC1tZWNoYW5pY2FsLXN0cmVuZ3RoLW9mLXdhZmVycy1hbmQtY2VsbHMtZHVyaW5nLXRoZS1jZWxsLW1hbnVmYWN0dXJpbmctcHJvY2Vzcy5wZGY=

Published In

Photovoltaics International Archive
The period of ‘profitless prosperity’ in the PV industry is finally at an end. Throughout 2013, despite continued economic woes, the PV industry has continued to expand and finally become a global industry. Market forecasts indicating that the sector could reach its next 100GW milestone in just the next two years suggest the industry is on the cusp of another period of strong growth. All the signs confirm this is the case, with utilization rates at their highest level since 2010, companies reporting full order books well into next year and the first tentative announcements of factory capacity expansions making the headlines.

Read Next

Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The holy grail of every solar cell producer is the creation of a lowcost interdigitated back-contact (IBC) solar cell with an efficiency greater than 25%, a goal that can be found in almost every roadmap presentation. In this paper it will be shown that we are not far away from achieving this target, since IBC devices, with different process complexities, are already in production at several companies.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper will accordingly outline the recent activities at CEA-INES concerning the development and understanding of the integration of such shingle cells.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
In this paper, an even greater reduction in wafer thickness, down to 130μm, is evaluated, and the critical steps in terms of breakage rates in cell and module production processes are reviewed. Finally, the mechanical stability and reliability of these thin HJT cells in glass–backsheet and glass–glass module types are addressed.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper provides a short overview of historical developments, presents the main approaches in mass production today, discusses potential process simplifications, and briefly touches upon a key topic for the future, namely reducing the silver (Ag) consumption per cell.
Photovoltaics International Archive
Fab & Facilities, Photovoltaics International Papers
This paper discusses what approaches from the digitalization field can be used quickly and easily to accelerate ramp-up, to analyse overlapping data and to improve production either manually or automatically.
Photovoltaics International Archive
Fab & Facilities, Photovoltaics International Papers
To embrace the terawatt-scale challenge of the PV market growth, a low-carbon and resource-efficient pathway has to be guaranteed. An approach for doing this is to enable market mechanisms that account for the greenhouse gases emissions, and their associated costs, from PV systems and components.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
October 6, 2021
Solar Media Events
October 19, 2021
BRISTOL, UK
Solar Media Events
December 1, 2021