PVI Paper

Digitalization meets PV production technology – Outline of a smart production of silicon solar cells and modules

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Martin Zimmer, Fraunhofer ISE, Freiburg, Germany; Matthias Demant, Fraunhofer ISE, Freiburg, Germany; Norbert Bergmann, Fraunhofer ISE, Freiburg, Germany; Stefan Rein, Fraunhofer ISE, Freiburg, Germany; Jochen Rentsch, Fraunhofer ISE, Freiburg, Germany; Ralf Preu, Fraunhofer ISE, Freiburg, Germany

Ever since the manufacturing of PV modules began suffering from a huge price decline, the reduction of the production cost has been a task of high priority. Digitalization is a subsequent further development of the automation of today’s PV cell and module manufacturing processes and can help to decrease production costs. A central concept of digitalization is the digital twin, which represents the properties and behaviours of physical assets, materials, processes or eventually the entire production line (the so-called smart fab). Different cases of its use are presented in this paper, along with a discussion of the corresponding applications of such digital twins. Finally, a smart fab for PV production is described.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy81MjUxMTNlZGU5LWRpZ2l0YWxpemF0aW9uLW1lZXRzLXB2LXByb2R1Y3Rpb24tdGVjaG5vbG9neS1vdXRsaW5lLW9mLWEtc21hcnQtcHJvZHVjdGlvbi1vZi1zaWxpY29uLXNvbGFyLWNlbGxzLWFuZC1tb2R1bGVzLnBkZg==

Published In

PVI Issue
With a recent spate of new solar cell records announced for PERC-based architectures pushing conversion efficiencies past 24%, it is a good time to reflect on the pioneering work at SolarWorld – the first to commercialise and ramp PERC to volume production. A special in-depth paper from former members of SolarWorld’s R&D and manufacturing team should be a compelling read and a leading reference paper in the future. Adding to the PERC-based theme is the paper from ISC Konstanz, providing further real world insight into achieving manufacturability of nPERT cells with conversion efficiencies approaching 23%.

Read Next

PVI Paper
Cell Processing, Photovoltaics International Papers
This paper presents preliminary results of SERIS’ biPolyTM cell: the bifacial application of polysiliconbased passivating contact stacks with front and rear screen-printed and fired metallization.
PVI Paper
Cell Processing, Photovoltaics International Papers
This work reports the latest results obtained at Jolywood for full-area (251.99cm2) n-type bifacial passivating-contact solar cells using a cost-effective process with industrially-feasible boron diffusion, phosphorus ion implantation and low-pressure chemical vapour deposition (LPCVD) with in situ oxidation.
PVI Paper
Cell Processing, Photovoltaics International Papers
This paper reviews the key technology improvements which have enabled a continuous 0.5%abs/year increase in efficiency of industrial PERC and PERC+ cells.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper provides a concise overview of existing c-Si-based 2-, 3- and 4-terminal tandem technologies, summarizes the current development status, and sets out the future roadmap. In addition, a discussion is included of what will be required over the coming years to bring these promising technologies to market, enabling commercial efficiencies above 30%.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper discusses, at both the cell and the module level, the balance between the advantages and drawbacks of increasing the cell bifaciality from a typical value of 90% towards 100%, or decreasing it towards that of monofacial cells (0%).
PVI Paper
Photovoltaics International Papers, PV Modules
Because it leads to higher efficiencies than aluminium back-surface field (Al-BSF) cells, passivated emitter and rear cell (PERC) technology is attracting more and more attention in the industry and gaining market share. However, PERC technology brings new challenges with regard to the phenomenon of degradation: some monofacial/bifacial PERC cell modules were found to demonstrate much higher power degradation than Al-BSF cell modules after damp-heat (DH: 85°C and 85% relative humidity RH, 1000h) and potential-induced degradation (PID: 85°C and 85% RH, –1,500V, 96h) tests, which will be the focus of this paper.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
March 9, 2021
Solar Media Events
March 17, 2021
Solar Media Events
April 13, 2021
Solar Media Events
April 20, 2021
Get 50% off!
Subscribe before 5th of April 2020!