PVI Paper

Innovation for optical, electrical and economic improvement of thin-film PV technology

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Joop van Deelen & Marco Barink, TNO

Innovation in the field of thin-film cells, in addition to economy of scale and the manufacturing learning curve, is an important element in keeping the price of this technology competitive. Most papers on these cells focus on their technology; however, the economic potential of the technology is also important. Of even greater significance, a realistic estimation of the potential, along with the associated costs, of advanced technology, is part of the equation for profitability. Two examples of technology – metallic grids and texturing – are given in this paper; the designs are discussed, and a brief economic analysis is presented for various scenarios of the technologies. Although the profitability of these technologies can be considerable, it is shown that one should be wary of basing decisions purely on potential and on ideal scenarios, and how the cost of a technology can turn a great prospect into a trade-off.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy8yYTJmNWY4YzUwLWlubm92YXRpb24tZm9yLW9wdGljYWwtZWxlY3RyaWNhbC1hbmQtZWNvbm9taWMtaW1wcm92ZW1lbnQtb2YtdGhpbmZpbG0tcHYtdGVjaG5vbG9neS5wZGY=

Published In

PVI Issue
The thirty-fifth issue of Photovoltaics International brings you insights into how investment in high-efficiency cell technology production appears to be showing no signs of slowing down and more about scientists from the R&D team at Canadian Solar look at so-called ‘black’ silicon, one of the new cell technology concepts beginning to gain currency. Additionally, how researchers from Germany’s Fraunhofer ISE take up the theme with a paper exploring the question of quality control in the production of high-efficiency silicon solar cells and not forgetting the growing importance of thin-film technologies in the overall PV mix.

Read Next

PVI Paper
Cell Processing, Photovoltaics International Papers
This paper presents preliminary results of SERIS’ biPolyTM cell: the bifacial application of polysiliconbased passivating contact stacks with front and rear screen-printed and fired metallization.
PVI Paper
Cell Processing, Photovoltaics International Papers
This work reports the latest results obtained at Jolywood for full-area (251.99cm2) n-type bifacial passivating-contact solar cells using a cost-effective process with industrially-feasible boron diffusion, phosphorus ion implantation and low-pressure chemical vapour deposition (LPCVD) with in situ oxidation.
PVI Paper
Cell Processing, Photovoltaics International Papers
This paper reviews the key technology improvements which have enabled a continuous 0.5%abs/year increase in efficiency of industrial PERC and PERC+ cells.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper provides a concise overview of existing c-Si-based 2-, 3- and 4-terminal tandem technologies, summarizes the current development status, and sets out the future roadmap. In addition, a discussion is included of what will be required over the coming years to bring these promising technologies to market, enabling commercial efficiencies above 30%.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper discusses, at both the cell and the module level, the balance between the advantages and drawbacks of increasing the cell bifaciality from a typical value of 90% towards 100%, or decreasing it towards that of monofacial cells (0%).
PVI Paper
Photovoltaics International Papers, PV Modules
Because it leads to higher efficiencies than aluminium back-surface field (Al-BSF) cells, passivated emitter and rear cell (PERC) technology is attracting more and more attention in the industry and gaining market share. However, PERC technology brings new challenges with regard to the phenomenon of degradation: some monofacial/bifacial PERC cell modules were found to demonstrate much higher power degradation than Al-BSF cell modules after damp-heat (DH: 85°C and 85% relative humidity RH, 1000h) and potential-induced degradation (PID: 85°C and 85% RH, –1,500V, 96h) tests, which will be the focus of this paper.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
March 9, 2021
Solar Media Events
March 17, 2021
Solar Media Events
April 13, 2021
Solar Media Events
April 20, 2021
Get 50% off!
Subscribe before 5th of April 2020!