Requires Subscription: Photovoltaics International Archive

Polarized light metrology for thin-film photovoltaics: Manufacturing-scale processes

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Robert W. Collins, Center for Photovoltaics Innovation & Commercialization and Department of Physics & Astronomy, University of Toledo; Nikolas J. Podraza, Center for Photovoltaics Innovation & Commercialization and Department of Physics & Astronomy, University of Toledo; Lila R. Dahal, Center for Photovoltaics Innovation & Commercialization and Department of Physics & Astronomy, University of Toledo; Kenneth R. Kormanyos, President & Senior Research Fellow , Calyxo USA; Sylvain Marsillac, Department of Electrical & Computer Engineering, Old Dominion University

In situ, real-time and off-line polarization spectroscopies have been applied in studies of large-area spatial uniformity of the components of multilayer stacks in hydrogenated silicon (Si:H) and cadmium telluride (CdTe) thin-film photovoltaic (PV) technologies. Such reflection spectroscopies involve first the measurement of spectra in the reflected-to-incident polarization state ratio of the light wave (or the ellipsometry angles of the reflecting multilayer stack), and then the analysis of these spectra to determine the thicknesses and properties of component layers of the stack. In addition, expanded capabilities result from measurement/analysis of the irradiance ratio and the degree of polarization of the reflected beam, simultaneously with the polarization state ratio, particularly for rough surfaces with in-plane roughness scales of the order of the optical wavelength or greater that scatter and depolarize the light beam. This paper provides examples of 1) real-time monitoring of texture etching of the transparent conducting oxide ZnO:Al; 2) real-time monitoring and off-line mapping of roll-to-roll deposited hydrogenated amorphous silicon (a-Si:H); and 3) large-area mapping of coated glass panels used in low-cost CdTe PV technology. For a-Si:H and CdTe thin-film PV technologies, the focus is on the characterization of the window layers, which are p-type protocrystalline Si:H and n-type cadmium sulphide (CdS), respectively. Analysis of the thickness, phase and structure of the window layer material over the area of the PV panel is critical in order to design processes for uniformity of high performance. Descriptions are given of future directions in novel instrumentation development that will enable mapping for uniformity evaluation at the high speeds required for on-line analysis.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy8zMTcxNTY1MDRjLXBvbGFyaXplZC1saWdodC1tZXRyb2xvZ3ktZm9yLXRoaW5maWxtLXBob3Rvdm9sdGFpY3MtbWFudWZhY3R1cmluZ3NjYWxlLXByb2Nlc3Nlcy5wZGY=

Published In

Photovoltaics International Archive
Our largest issue to date at 224 pages, the 13th edition of the Photovoltaics International journal features a focus on myriad topics including wafering and wire-sawing thermodynamics, the passivation benefits of ALD, reactive magnetron sputtering, PV module degradation and inverter certification. Contributors include imec, Fraunhofer IST, Motech Industries, PI Berlin, University of Toledo and CH2M HILL.

Read Next

Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The holy grail of every solar cell producer is the creation of a lowcost interdigitated back-contact (IBC) solar cell with an efficiency greater than 25%, a goal that can be found in almost every roadmap presentation. In this paper it will be shown that we are not far away from achieving this target, since IBC devices, with different process complexities, are already in production at several companies.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper will accordingly outline the recent activities at CEA-INES concerning the development and understanding of the integration of such shingle cells.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
In this paper, an even greater reduction in wafer thickness, down to 130μm, is evaluated, and the critical steps in terms of breakage rates in cell and module production processes are reviewed. Finally, the mechanical stability and reliability of these thin HJT cells in glass–backsheet and glass–glass module types are addressed.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper provides a short overview of historical developments, presents the main approaches in mass production today, discusses potential process simplifications, and briefly touches upon a key topic for the future, namely reducing the silver (Ag) consumption per cell.
Photovoltaics International Archive
Fab & Facilities, Photovoltaics International Papers
This paper discusses what approaches from the digitalization field can be used quickly and easily to accelerate ramp-up, to analyse overlapping data and to improve production either manually or automatically.
Photovoltaics International Archive
Fab & Facilities, Photovoltaics International Papers
To embrace the terawatt-scale challenge of the PV market growth, a low-carbon and resource-efficient pathway has to be guaranteed. An approach for doing this is to enable market mechanisms that account for the greenhouse gases emissions, and their associated costs, from PV systems and components.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
December 1, 2021
Solar Media Events
February 1, 2022
London, UK
Solar Media Events
February 23, 2022
London, UK
Solar Media Events
March 23, 2022
Austin, Texas, USA
Solar Media Events
March 29, 2022
Lisbon, Portugal

Cyber Monday Flash Sale – 50% off our subscriptions

24 hours only