Centrosolar Glas offers 30% reduction of module glass thickness and weight

Facebook
Twitter
LinkedIn
Reddit
Email

Centrosolar Glas has developed a particularly thin solar glass for photovoltaic modules. The ‘CENTROSOL’ thin glass is only 2.3mm or 2.6mm thick, enabling a reduction in the minimum thickness by almost 30 % at the same mechanical resistance thanks to process optimization. The thin glass currently offered exclusively by Centrosolar Glas reduces the total weight of modules, which is claimed to simplify the assembly and transportation and mounting costs.

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Reducing module weight and providing enhanced technologies that make conventional PV module glass ‘smart,’ supports both enhanced yield and lower BOS costs during installation.

Solution

The CENTROSOL thin glass also offers the advantage of higher light transmission. It moreover extends the operating life of the PV modules because glass is more resistant to environmental effects than a plastic back sheet. The thermal conductivity of glass is higher than a backing film, reducing the cell operating temperature of a glass-glass module and improving efficiency especially in hot climatic conditions. Moreover it offers aesthetic advantages: the thin glass sandwich gives the PV module a genuine high-tech character. What is more, the customer can match the colour of the glass backing to the roof. The company claims that a 6% increase in the annual energy yield is attainable from photovoltaic modules, which is made possible by a patented anti-reflective coating that minimizes reflection by the surface of the glass, thus maximizing energy transmission to the solar cell or absorber.

Applications

The innovative solar glass with a thickness of only 2.3mm and 2.6mm is particularly suitable for glass-glass modules. Up to now, single pane safety glass could only be produced with a minimum thickness of 3mm.

Platform

The energy yield can be further increased by means of the CENTROSOL HiT Nano Power anti-reflective coating. This coating further improves the transmission properties and therefore the annual energy yield of a photovoltaic system by up to 6 %. Furthermore, the low-iron solar glass with anti-reflective coating exhibits hydrophilic surface properties, creating a degree of self-cleaning.

Availability

August 2012 onwards.

Read Next

September 17, 2025
US renewables developer Longroad Energy has reached financial close for its 400MW 1000 Mile solar project in the US state of Texas.
September 17, 2025
Spanish renewables developer and operator Acciona Energía has commissioned its 412MWp Juna solar PV plant in Kawani village in the western state of Rajasthan. 
September 17, 2025
Spanish IPP Velto Renewables has acquired a portfolio of 53 operational solar assets in Spain with a combined capacity of 260MW.
September 17, 2025
Struggling Swiss solar manufacturer Meyer Burger has formally entered into a debt moratorium, with the possibility of rescuing the entire group now looking unlikely.
September 17, 2025
Nexamp has secured US$350 million through a long-term financing facility to expand its 6GW utility-scale solar and battery storage pipeline in the US. 
September 17, 2025
Chinese module producer DAS Solar is planning a 5GW manufacturing facility focused on producing high-efficiency back contact cells.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
September 30, 2025
Seattle, USA
Solar Media Events
October 1, 2025
London, UK
Solar Media Events
October 2, 2025
London,UK
Solar Media Events
October 7, 2025
Manila, Philippines
Solar Media Events
October 7, 2025
San Francisco Bay Area, USA