Centrosolar Glas offers 30% reduction of module glass thickness and weight

September 10, 2012
Facebook
Twitter
LinkedIn
Reddit
Email

Centrosolar Glas has developed a particularly thin solar glass for photovoltaic modules. The ‘CENTROSOL’ thin glass is only 2.3mm or 2.6mm thick, enabling a reduction in the minimum thickness by almost 30 % at the same mechanical resistance thanks to process optimization. The thin glass currently offered exclusively by Centrosolar Glas reduces the total weight of modules, which is claimed to simplify the assembly and transportation and mounting costs.

Problem

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Reducing module weight and providing enhanced technologies that make conventional PV module glass ‘smart,’ supports both enhanced yield and lower BOS costs during installation.

Solution

The CENTROSOL thin glass also offers the advantage of higher light transmission. It moreover extends the operating life of the PV modules because glass is more resistant to environmental effects than a plastic back sheet. The thermal conductivity of glass is higher than a backing film, reducing the cell operating temperature of a glass-glass module and improving efficiency especially in hot climatic conditions. Moreover it offers aesthetic advantages: the thin glass sandwich gives the PV module a genuine high-tech character. What is more, the customer can match the colour of the glass backing to the roof. The company claims that a 6% increase in the annual energy yield is attainable from photovoltaic modules, which is made possible by a patented anti-reflective coating that minimizes reflection by the surface of the glass, thus maximizing energy transmission to the solar cell or absorber.

Applications

The innovative solar glass with a thickness of only 2.3mm and 2.6mm is particularly suitable for glass-glass modules. Up to now, single pane safety glass could only be produced with a minimum thickness of 3mm.

Platform

The energy yield can be further increased by means of the CENTROSOL HiT Nano Power anti-reflective coating. This coating further improves the transmission properties and therefore the annual energy yield of a photovoltaic system by up to 6 %. Furthermore, the low-iron solar glass with anti-reflective coating exhibits hydrophilic surface properties, creating a degree of self-cleaning.

Availability

August 2012 onwards.

Read Next

January 13, 2026
The British International Investment (BII), has committed US$20 million to Vietnamese lender HDBank's inaugural green bond programme.
January 12, 2026
UAE state-run renewables developer Masdar has signed a power purchase agreement for a 150MW solar PV project in Angola.
January 12, 2026
Norwegian independent power producer Scatec has signed a power purchase agreement for 1.95GW of PV and 3.9GWh of BESS capacity in Egypt.
January 12, 2026
Parts of China saw Global Horizontal Irradiation (GHI) reach 20% more than the long-term average (LTA) figures in 2025.
January 12, 2026
Solar PV solutions provider Nextpower has finalised its Saudi joint venture formation, Nextpower Arabia, which is building a manufacturing facility in the country.
January 12, 2026
US metals firm Comstock has completed all the necessary permits to build a solar module recycling facility in Nevada.

Upcoming Events

Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
November 24, 2026
Warsaw, Poland