PVI Issue

Photovoltaics International Volume 18

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

Our focus here at Photovoltaics International has always been on efficiency improvement and driving down the cost per watt of modules. In this issue we take a look at some of the market dynamics driving prices in the supply chain so that you can make better decisions to help reduce your overall cost per watt and increase your efficiency at the same time.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy8wZTEzYWE4ZGQ0LXBob3Rvdm9sdGFpY3MtaW50ZXJuYXRpb25hbC12b2x1bWUtMTgucGRm

In this issue...

PVI Paper
Market Watch, Photovoltaics International Papers
This paper provides an overview of reducing the ‘soft costs’ of solar, with a focus on driving down the cost of balance of system (BOS) and operations, primarily in commercial-scale installations. Attention is drawn to the internal data and information on specific case studies/best practices that can be replicated by other companies. Mainstream Energy (which supports three business units – REC Solar, AEE Solar and SnapNRack) aims to simplify system design and configuration by utilizing new technologies and streamlining internal processes to reduce total system cost – and take solar to the mainstream.
PVI Paper
Photovoltaics International Papers, Power Generation
This paper provides an overview of reducing the ‘soft costs’ of solar, with a focus on driving down the cost of balance of system (BOS) and operations, primarily in commercial-scale installations. Attention is drawn to the internal data and information on specific case studies/best practices that can be replicated by other companies. Mainstream Energy (which supports three business units – REC Solar, AEE Solar and SnapNRack) aims to simplify system design and configuration by utilizing new technologies and streamlining internal processes to reduce total system cost – and take solar to the mainstream.
PVI Paper
Photovoltaics International Papers, Power Generation
Economic success in operating PV systems depends essentially on the likelihood of their long-term operation and their delivery of the expected energy yield. These requirements, for which a lifetime of 20–25 years is often assumed, are demanding and cannot be met without preparation. Preconditions are the acceptable quality and long-term stability of the products employed (particularly the PV modules, but also all other components and materials) and the absence of damage to these items during transport and handling. Moreover, PV systems must be professionally planned and properly implemented. This includes considering energy yield assessments not only in the initial estimation of the energy yield, but also in the subsequent planning for concrete implementation. In addition, professional operational management and appropriate maintenance measures will ensure operation with maximum availability. Yield insurance policies can safeguard profitability and render the risks calculable; various models exist for this purpose and these must be carefully tested. It is important that the insurances services also cover the possible insolvency of the responsible system and component suppliers.
PVI Paper
Photovoltaics International Papers, PV Modules
Electroluminescence (EL) imaging for photovoltaic applications has been widely discussed over the last few years. This paper presents the results of a thorough evaluation of this technique in regard to defect detection in photovoltaic modules, as well as for quality assessment. The ability of an EL system to detect failures and deficiencies in both crystalline Si and thin-film PV modules (CdTe and CIGS) is thoroughly analyzed, and a comprehensive catalogue of defects is established. For crystalline silicon devices, cell breakages resulting from micro-cracks were shown to pose the main problem and to significantly affect the module performance. A linear correlation between the size of the breakages and the power drop in the module was established. Moreover, mechanical stress and temperature change were identified as the major causes of the proliferation of cracks and breakages. For thin-film modules, EL imaging proved the existence of an impressive reduction in the size of localized shunts under the effect of light-soaking (together with a performance improvement of up to 8%). Aside from that, the system voltage was applied in order to monitor transparent conductive oxide (TCO) corrosion effects and laser-scribing-induced failures, as well as several problems related to the module junction box in respect of its sealing and the quality of its electric connectors.
PVI Paper
Photovoltaics International Papers, PV Modules
Because potential-induced degradation (PID) can cause power losses of more than 30% for modules out in the field, there has already been an extensive effort placed on avoiding this adverse phenomenon. A key feature at the cell level is the silicon nitride (SiNx) anti-reflective coating (ARC). Apart from the known dependency of PID susceptibility on the refractive index, the impact of the deposition parameters has also been under investigation. This paper illustrates the influence of different silicon nitrite layers and their ability to prevent PID. A large number of cells and modules were therefore manufactured, differing only in the type of ARC. The modules were subsequently PID tested under three different climatic conditions, and acceleration factors and activation energies were determined from these tests. In addition this paper presents the results of addressing the weak-light performance and the hot-spot risk of panels after PID exposure. Finally, the reversibility of PID was also investigated in relation to the state of degradation of these samples.
PVI Paper
Photovoltaics International Papers, Thin Film
Since the demonstration of the first CuInSe2 solar cell in 1974 by scientists at Bell Laboratories, a lot of effort has been put into the development of cost-effective processes for highly efficient Cu(In,Ga)(Se,S)2 – or CIGS – solar cell devices. In 2012 these efforts led to the first gigawatt CIGS solar module production facility operated by Solar Frontier, a company that has a long history in R&D and originates from ARCO Solar, who developed the first commercial CIGS solar modules at the beginning of the 1990s. However, several start-up companies employing CIGS technology are presently struggling in the currently harsh market environment. Even though world-record laboratory solar cells now demonstrate 20.3% efficiency using a three-stage co-evaporation process, and full-size modules achieve 14.6% employing a similar method, efforts in research and development are more important than ever in order to increase cell efficiency, to bridge the gap between cell and module efficiencies, and to develop cost-effective and robust manufacturing processes. This paper gives an overview of current research topics under investigation by research institutes and industry, with a main focus on CIGS absorber formation. Along with other research results published by groups all over the world, this paper covers recent research results obtained at the Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) and briefly mentions the work of the Photovoltaic Competence Center Berlin (PVcomB), a joint initiative of the Technical University of Berlin (TU Berlin) and HZB.
PVI Paper
Cell Processing, Photovoltaics International Papers
This paper presents the background and technology development of the use of ion implantation technology in today’s crystalline silicon solar cell manufacturing lines. The recent history of ion implantation development and commercialization is summarized, and an explanation is given for the cell efficiency improvements realized using the technique on p-type mono-crystalline cells. The potential economic impact on the factory is also discussed.
PVI Paper
Cell Processing, Photovoltaics International Papers
Reducing the cost of photovoltaic energy is the main objective of solar cell manufacturers. This is ideally realized by increasing cell efficiency and simultaneously decreasing manufacturing cost. To reduce fabrication costs, the international roadmap of photovoltaics (ITRPV) forecasts a reduction in cell thickness from 180μm to 120μm in the next six years, and even thinner cells may be desirable, as long as efficiency and yield are not negatively affected. In order to increase efficiency, the ITRPV forecasts an increase in share of back-contacted cells from 5% to 35% in the next eight years. In this paper the dependence of the efficiency of back-junction back-contact (BJBC) solar cells on cell thickness is investigated experimentally and numerically. To this end, BJBC silicon solar cells with cell thicknesses ranging from 45μm to 290μm are fabricated and simulated. Thinned float-zone material is used as well as monocrystalline epitaxial layers fabricated by the porous silicon process for 45μm-thick cells. The efficiency of the best cell is 22.6% (130μm cell thickness) and 18.9% for an epitaxial cell (45μm thickness). Loss mechanisms in the maximum power point of all cells are investigated by using a freeenergy loss analysis based on finite-element simulations. A lower generation and a lower recombination in thinner cells compete against each other, resulting in a maximum efficiency of 20% for a cell thickness of 45μm at a base lifetime of 20μs. At a base lifetime of 3000μs, the maximum efficiency is greater than 23% for a cell thickness beyond 290μm, but reducing the cell thickness from 290μm to about 90μm results in a power loss of less than 0.6% absolute.
PVI Paper
Cell Processing, Photovoltaics International Papers
The market price of Ag has fluctuated considerably over the past ten years and has impacted the manufacturing cost of Si solar cells and the price of Si PV. Reducing Ag consumption can decrease this cost; however, such reduction may come at the expense of cell performance. In order to address the issue of Ag cost reduction while maintaining high cell efficiency, phosphorus emitter profiles are tailored via POCl3 diffusion to create solar cell emitters displaying low saturation current density (J0e), variable electrically active surface phosphorus concentration ([Psurface]), and variable sheet resistance with the aim of reducing Ag consumption. By optimizing emitter diffusion conditions, it is possible to reduce screen-printed Ag paste consumption by 33% with no loss in cell performance. Using a screen-printable Ag conductor paste designed to contact low [Psurface] emitters, the performance of cells with screen-printed Ag paste dry masses of 200, 120 and 80mg is compared. By using a tailored low-J0e 55Ω/sq emitter, it is possible to achieve a high open-circuit voltage (Voc) and short-circuit current (Jsc) to yield average cell efficiencies of 18.64% and 18.73% for 120mg and 80mg Ag paste dry mass, respectively. This is compared with efficiencies of 18.52% for cells using state-of-the-art technology (industrial high [Psurface] 65Ω/sq emitter with 120mg Ag paste dry mass). On the basis of a Ag market price of US$32/troy oz and an 85% by weight thick-film paste Ag metal content, a Ag front-side metallization cost of US¢2.11/W can be achieved by using 80mg Ag paste dry mass, which translates to a Ag cost saving of US$5.4M per year for a 500MW production line when compared with the Ag cost for state-of-the-art technology. Further cost analysis shows a 1.2% area-related balance of system (BOS) cost reduction and a US¢0.1/kWh reduction when comparing low-J0e 55Ω/sq modules and state-of-the-art modules. Calculations show that an additional 0.5% absolute efficiency for state-of-the-art modules is required, to compensate the efficiency gains and Ag cost reduction afforded by low-J0e 55Ω/sq modules.
PVI Paper
Materials, Photovoltaics International Papers
A record-low spot price in the wake of oversupply and the aggressive cost-reduction roadmap of the PV industry are putting polysilicon producers under pressure to bring down their manufacturing costs. With the dominant Siemens process approaching a limit for further cost cuts, technologies based on the deposition from monosilane (SiH4) have now become the focus of attention.
PVI Paper
Materials, Photovoltaics International Papers
The cost of PV modules manufactured and sold in 2012 is highly reliant on the materials used in the construction. A significant part of the market price is driven by the bill of materials, while other direct costs and depreciation form a small proportion of the total cost. Changes within the supply chain, and in the cost of the materials needed and used, are extremely important influences on the module cost and the end market price. In 2012 we have seen a slowdown in growth in the installation of both commercial and residential PV, despite dramatic falls in module costs. Some of the trends and effects of these changes on the materials supply chain for PV modules will be examined in this paper.
PVI Paper
Fab & Facilities, Photovoltaics International Papers
Production equipment is the backbone of the PV industry, but the equipment sector is suffering because of overcapacity. The 2012 global capacity utilization is at 55% for crystalline silicon (x-Si) module production, 70% for cadmium telluride (CdTe) and 80% for copper indium gallium (di)selenide (CIGS). Under these market conditions, there are almost no expected capacity expansions in the near term. The overcapacity has driven the average selling price (ASP) for modules significantly lower, resulting in hyper-competition in the PV industry, where almost all PV companies recognize the importance of product differentiation while still reducing costs. These market conditions present an opportunity for equipment manufacturers to differentiate their offerings through enabling lower production costs and higher efficiency of cells and modules.

Subscribe to Newsletter

Upcoming Events

Upcoming Webinars
May 26, 2021
Session 1 - 7:00 AM (BST) | Session 2 - 5:00 PM (BST)
Solar Media Events
June 15, 2021
Solar Media Events
July 6, 2021
Solar Media Events
August 24, 2021