Recombination loss improvements key to Panasonic HIT cell efficiency of 24.7%

February 12, 2013
Facebook
Twitter
LinkedIn
Reddit
Email

Panansonic has produced an advanced version of its hybrid HIT solar cell with a record conversion efficiency of 24.7%, 0.8% higher than before.

According to Panasonic the record cell was produced in the lab, using a cell surface area of 101.8 cm², with an n-type wafer thicknes of 98 µm.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Panasonic claimed that the 24.7% conversion efficiency, verified by Japan’s National Institute of Advanced Industrial Science and Technology, is the highest rated of any crystalline silicon-based solar cell of 100 cm² and above size used in practical production modules, based on an internal study of published data to date.

Previously, Panasonic had reported a record HIT cell efficiency of 23.9%, however the new record is also 0.5 percentage points higher than the previously published record, set by SunPower.

Panasonic said that a key breakthrough in producing the record cell was the ability to significantly reduce the recombination losses by depositing a high quality amorphous silicon layer onto the monocrystalline silicon substrates surface.

Recombination loss refers to a reduction in current and voltage output from the solar cell caused by positive and negative electrical charge (carriers) generated within the solar cell then combining within the solar cell and thus cancelling them out.

However, the company also developed a new deposition process of even higher quality but with a less damage to the surface of the substrate that also reduced recombination losses further, resulting in an open voltage (Voc) of 0.750V, up from 0.748V.

A second key development was a reduction in optical loss from the transparent conductive coatings (TCO) and the amorphous silicon layer covering the substrate by reduced absorption loss.

Improved electrical current was also supported by a reduction in shading by reducing the surface area of the grid electrode on the cell surface. As a result Panasonic said that the density of the short-circuit current (Jsc), or the maximum current generated by the solar cell had been improved from 38.9 mA/cm² to 39.5 mA/cm².

Resistive losses were also reduced within the grid electrode via an electrode with a higher aspect ratio. This resulted in the fill factor (FF) improving from 0.822 to 0.832.

Panasonic followed the industry norm by not saying when the process developments used to achieve the record cell efficiencies would enter volume production. However, the company said: “Panasonic will focus on applying this newly developed high-efficiency technology to mass production products.”
 

Read Next

October 27, 2025
Australian solar developer, BNRG Leeson, has submitted plans for a 440MW solar PV facility in Victoria's Campaspe Shire to Australia’s Environment Protection and Biodiversity Conservation (EPBC) Act.
Premium
October 24, 2025
Marcel Suri explores the datasets that will help improve the accuracy of PV output estimation and drive better performance.
October 24, 2025
US solar tracker manufacturer Nextracker and Saudi-based energy company Abunayyan Holding have formed a joint venture (JV) in Saudi Arabia.
October 24, 2025
The Saudi state-owned renewables developer Masdar has begun construction on a giant solar-plus-storage project in Abu Dhabi.
October 23, 2025
The average price of a solar PPA signed in Europe in Q3 2025 fell below €35/MWh, reaching €34.25/MWh, according to LevelTen Energy.
October 23, 2025
Infrastructure investment firm Nuveen Infrastructure has secured US$171 million in financing for a 137MW solar PV plant in South Korea.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 10, 2026
Frankfurt, Germany
Solar Media Events
March 24, 2026
Lisbon, Portugal