PV Modules

Premium
Photovoltaics International Papers, PV Modules
Conventional ribbons used for interconnecting solar cells in PV modules act like mirrors, causing a large proportion of incident light to be lost. Experimental results indicate that only around 5% of the perpendicular incident light on the connections can be reused; as a result, this area contributes very little, if at all, to the current generation.
Premium
PV Modules, PV Tech Power Papers
PV Tech can reveal the preliminary top 5 solar module manufacturers in 2016, based as usual on final shipment guidance from third quarter financial results.
Premium
Photovoltaics International Papers, PV Modules
PV manufacturing capacity expansions planned this year are expected to push production levels beyond anticipated demand in 2016, creating further cost pressures for suppliers.
Premium
Photovoltaics International Papers, PV Modules
The output power of a solar module is the sum of the powers of all the individual cells in the module multiplied by the cell-to-module (CTM) power ratio. The CTM ratio is determined by interacting optical losses and gains as well as by electrical losses. Higher efficiency and output power at the module level can be achieved by using novel ideas in module technology. This paper reviews methods for reducing different optical and electrical loss mechanisms in PV modules and for increasing the optical gains in order to achieve higher CTM ratios. Various solutions for optimizing PV modules by means of simulations and experimental prototypes are recommended. Finally, it is shown that designing PV modules on the basis of standard test conditions (STC) alone is not adequate, and that, to achieve higher CTM ratios by improving the module designs in respect of environmental conditions, an energy yield analysis is essential.
Premium
Photovoltaics International Papers, PV Modules
The back-contact (BC) technology currently available on the market is considered to be either highly efficient but extremely expensive (interdigitated back contact – IBC – from SunPower) or, if cost-effective, not very efficient (metal wrap-through – MWT) compared with what is becoming today’s new standard: passivated emitter and rear contact (PERC) technology. Something in between, such as low-cost, high-efficiency IBC cells and modules, would therefore be desirable. This paper briefly describes the past, focuses on the present, and forecasts the possible future developments of BC technology in respect of efficiencies, costs and applications.
Premium
Plant Performance, PV Modules, PV Tech Power Papers
Potential-induced degradation can cause significant power loss in modules if the appropriate precautions are not taken. In the first part of a new series in PV Tech Power on module failure, Peter Hacke and Steve Johnston assess the current state-of-the-art in detecting, avoiding and mitigating the worst effects of PID.
Premium
Photovoltaics International Papers, PV Modules
‘Silicon Module Super League’ (SMSL) member Jinko Solar has reported the second consecutive quarter of solar module shipments that were higher than leading SMSL rival, Trina Solar.
Premium
Photovoltaics International Papers, PV Modules
The continual increase in cell efficiency of passivated emitter and rear cells (PERCs), as well as the optimization of the module processes, has led to significant advances in module power and efficiency. To achieve the highest module power output, one important aspect to consider is the optimization of the solar cell front metallization and the cell interconnection.
Premium
Photovoltaics International Papers, PV Modules
Cell-to-module (CtM) loss is the loss in power when a number of cells are interconnected and laminated in the creation of a PV module. These losses can be differentiated into optical losses, leading to a lower photogenerated current, and resistive losses, leading to a decrease in fill factor. However, since the application of anti-reflection (AR) coatings and other optical ‘tricks’ can sometimes increase the Isc of the module with respect to the average cell Isc, the CtM loss in such cases needs to be expressed as a negative value, which gives rise to confusion. It is proposed to use the CtM change, where a negative value corresponds to a loss in current or power, and a positive value to a gain. In this paper, the CtM changes for back-contact modules utilizing a conductive foil are described and compared with other mature module technologies. A detailed analysis of the CtM change for a full-size metal-wrap-through (MWT) module is presented.
Premium
Photovoltaics International Papers, PV Modules
Higher power generation yield is the prime objective of any solar power plant developer. The quality and reliability of the modules used are therefore a key aspect, with customers placing stringent criteria on cell and module manufacturers with regard to product quality. Electroluminescence (EL) image monitoring, which gives a clear picture of defect distribution across a module, is an increasingly popular quality criterion.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
May 21, 2024
Sydney, Australia
Solar Media Events
May 21, 2024
Napa, USA
Solar Media Events
May 22, 2024
London, UK