By Hamed Hanifi, Charlotte Pfau, David Dassler, Sebastian Schindler, Jens Schneider, Marko Turek & Joerg Bagdahn Fraunhofer Center for Silicon Photovoltaics CSP, Halle; Anhalt University of Applied Sciences, Faculty EMW, Koethen, Germany
The output power of a solar module is the sum of the powers of all the individual cells in the module multiplied by the cell-to-module (CTM) power ratio. The CTM ratio is determined by interacting optical losses and gains as well as by electrical losses. Higher efficiency and output power at the module level can be achieved by using novel ideas in module technology. This paper reviews methods for reducing different optical and electrical loss mechanisms in PV modules and for increasing the optical gains in order to achieve higher CTM ratios. Various solutions for optimizing PV modules by means of simulations and experimental prototypes are recommended. Finally, it is shown that designing PV modules on the basis of standard test conditions (STC) alone is not adequate, and that, to achieve higher CTM ratios by improving the module designs in respect of environmental conditions, an energy yield analysis is essential.