Requires Subscription: Photovoltaics International Archive

Investigation of cell-to-module (CTM) ratios of PV modules by analysis of loss and gain mechanisms

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Hamed Hanifi, Charlotte Pfau, David Dassler, Sebastian Schindler, Jens Schneider, Marko Turek & Joerg Bagdahn Fraunhofer Center for Silicon Photovoltaics CSP, Halle; Anhalt University of Applied Sciences, Faculty EMW, Koethen, Germany

The output power of a solar module is the sum of the powers of all the individual cells in the module multiplied by the cell-to-module (CTM) power ratio. The CTM ratio is determined by interacting optical losses and gains as well as by electrical losses. Higher efficiency and output power at the module level can be achieved by using novel ideas in module technology. This paper reviews methods for reducing different optical and electrical loss mechanisms in PV modules and for increasing the optical gains in order to achieve higher CTM ratios. Various solutions for optimizing PV modules by means of simulations and experimental prototypes are recommended. Finally, it is shown that designing PV modules on the basis of standard test conditions (STC) alone is not adequate, and that, to achieve higher CTM ratios by improving the module designs in respect of environmental conditions, an energy yield analysis is essential.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy8xZTRlMmRkOGMwLWludmVzdGlnYXRpb24tb2YtY2VsbHRvbW9kdWxlLWN0bS1yYXRpb3Mtb2YtcHYtbW9kdWxlcy1ieS1hbmFseXNpcy1vZi1sb3NzLWFuZC1nYWluLW1lY2hhbmlzbXMucGRm

Published In

Photovoltaics International Archive
This issue of Photovoltaics International focuses on the steady adoption of PERC as the technology of choice for providing a quick boost to cell performances. Our chief analyst, Finlay Colville, reports that PERC is a key driver for internal technology roadmaps of all silicon cell providers and is indirectly influencing the development of other technologies in competing n-type and thin-film segments. However, PERC is not without its drawbacks, and one of these is its increased susceptibility to light-induced degradation. Other highlights include ISC Konstanz on the future of back-contact technology and ECN on the development of a new technique for minimising recombination losses in silicon solar cells.

Read Next

Photovoltaics International Archive
Photovoltaics International Papers, PV Modules
With mature product offerings now available from several of the leading industrial PV equipment and tool manufacturers, and latest-generation ECAs available from suppliers, this article aims to provide important background information on ECAs, as well as give a brief overview of some of the challenges and cutting-edge developments in ECA-related PV applications.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper reviews those associated fabrication technologies for the mass production of Ni/Cu-plated contacts. The technologies currently in use in the PV industry for plated contacts, as well as the developing technologies having high scaling-up potential, will be reviewed. In addition, the future requirements for plating metallization will be discussed.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper discusses what is actually behind these announcements and how an evolutionary industry sector such as PVis becoming, it seems, decidedly revolutionary with large jumps in efficiency.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper presents an analysis and the results of extensive simulations of the efficiency limits and roadmap to 25.5% of a tunnel oxide passivated contact (TOPCon) solar cell, on the basis of an efficiency level of 25.21% (designed area, identified by ISFH) achieved through three years of continuous technical optimization on a pilot line at Longi.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The development of new ways of increasing the production throughput for passivated emitter and rear cells (PERCs), as the major solar cell technology in the global market, is an area of great interest to the PV community. This paper presents approaches for significantly increasing the throughput of PERC production processes. The main focus is on the tube furnace processes for the emitter formation and oxidation, with the introduction of the High Temperature Stack Oxidation (HiTSOx) approach. Additional approaches that are currently under investigation at Fraunhofer ISE for increasing the throughput for wet-chemical, printing and laser processes will also be briefly outlined.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The holy grail of every solar cell producer is the creation of a lowcost interdigitated back-contact (IBC) solar cell with an efficiency greater than 25%, a goal that can be found in almost every roadmap presentation. In this paper it will be shown that we are not far away from achieving this target, since IBC devices, with different process complexities, are already in production at several companies.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
May 17, 2022
Lisbon, Portugal
Upcoming Webinars
May 17, 2022
4:00 PM (CEST) | About 30 minutes
Solar Media Events
June 14, 2022
Napa, USA
Solar Media Events
October 4, 2022
New York, USA