Premium

19.31%-efficient multicrystalline silicon solar cells using MCCE black silicon technology

Facebook
Twitter
LinkedIn
Reddit
Email

By Xusheng Wang, Shuai Zou & Guoqiang Xing, Canadian Solar Inc. (CSI)

A novel nanoscale pseudo-pit texture has been formed on the surface of a multicrystalline silicon (mc-Si) wafer by using a metal-catalysed chemical etching (MCCE) technique and an additional chemical treatment.
A desirable nanoscale inverted-pyramid texture was created by optimizing the recipe of the MCCE solution and using a proprietary in-house chemical post-treatment; the depth and width of the inverted pyramid was adjustable within a 100–900nm range. MCCE black mc-Si solar cells with an average efficiency of 18.90% have been fabricated on CSI’s industrial production line, equating to an efficiency gain of ~0.4%abs. at the cell level. A maximum cell efficiency of 19.31% was achieved.

Published In

Premium
The thirty-fifth issue of Photovoltaics International brings you insights into how investment in high-efficiency cell technology production appears to be showing no signs of slowing down and more about scientists from the R&D team at Canadian Solar look at so-called ‘black’ silicon, one of the new cell technology concepts beginning to gain currency. Additionally, how researchers from Germany’s Fraunhofer ISE take up the theme with a paper exploring the question of quality control in the production of high-efficiency silicon solar cells and not forgetting the growing importance of thin-film technologies in the overall PV mix.

Read Next

Subscribe to Newsletter

Upcoming Events

Solar Media Events
November 19, 2024
Philadelphia, USA
Solar Media Events
November 20, 2024
Zhuhai, China
Solar Media Events
November 21, 2024
London, UK
Solar Media Events
November 26, 2024
Málaga, Spain
Solar Media Events
November 26, 2024
Warsaw, Poland