Requires Subscription: Photovoltaics International Archive

Cell efficiency increase of 0.4% through light-induced plating

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Andrew Fioramonti, Global Solar Product Manager, Technics, Inc.

A vast majority of silicon solar cells are manufactured using silver paste that is screen printed onto the front side of the wafer and fired to form the front-side contact. Though this method is well established within the industry, it continues to present several areas for potential efficiency improvements. The Fraunhofer Institute [1] has, among others, studied the potential of using electrodeposition of silver on top of the front side silver paste as a way to improve the front-side contact and increase cell efficiency. These results have shown cell efficiency increases of up to 0.4% absolute. This type of improvement has captured the interest of many manufacturers, but there has been a hesitancy to adopt electrodeposition as there is uncertainty as to what they can expect on their cells. Since efficiency gains are dependent upon many factors that can be unique to an individual cell, this paper provides a much-needed exploration of the potential effects of electrodeposition of silver in a way that isolates its effects from that of other factors.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy9kNzRmNTIyYzYwLWNlbGwtZWZmaWNpZW5jeS1pbmNyZWFzZS1vZi0wLTQtdGhyb3VnaC1saWdodGluZHVjZWQtcGxhdGluZy5wZGY=

Published In

Photovoltaics International Archive
The second edition of Photovoltaics International was published in November 2008. It includes the cost benefits of conversion of used 200mm semiconductor fabs for the PV industry by CH2M Hill in Fab & Facilities, in-line plasma-chemical etching from Fraunhofer IWS in Cell Processing and NREL presents design criteria for back- and front-sheet materials in PV Modules.

Read Next

Photovoltaics International Archive
Photovoltaics International Papers, PV Modules
With mature product offerings now available from several of the leading industrial PV equipment and tool manufacturers, and latest-generation ECAs available from suppliers, this article aims to provide important background information on ECAs, as well as give a brief overview of some of the challenges and cutting-edge developments in ECA-related PV applications.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper reviews those associated fabrication technologies for the mass production of Ni/Cu-plated contacts. The technologies currently in use in the PV industry for plated contacts, as well as the developing technologies having high scaling-up potential, will be reviewed. In addition, the future requirements for plating metallization will be discussed.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper discusses what is actually behind these announcements and how an evolutionary industry sector such as PVis becoming, it seems, decidedly revolutionary with large jumps in efficiency.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper presents an analysis and the results of extensive simulations of the efficiency limits and roadmap to 25.5% of a tunnel oxide passivated contact (TOPCon) solar cell, on the basis of an efficiency level of 25.21% (designed area, identified by ISFH) achieved through three years of continuous technical optimization on a pilot line at Longi.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The development of new ways of increasing the production throughput for passivated emitter and rear cells (PERCs), as the major solar cell technology in the global market, is an area of great interest to the PV community. This paper presents approaches for significantly increasing the throughput of PERC production processes. The main focus is on the tube furnace processes for the emitter formation and oxidation, with the introduction of the High Temperature Stack Oxidation (HiTSOx) approach. Additional approaches that are currently under investigation at Fraunhofer ISE for increasing the throughput for wet-chemical, printing and laser processes will also be briefly outlined.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The holy grail of every solar cell producer is the creation of a lowcost interdigitated back-contact (IBC) solar cell with an efficiency greater than 25%, a goal that can be found in almost every roadmap presentation. In this paper it will be shown that we are not far away from achieving this target, since IBC devices, with different process complexities, are already in production at several companies.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
June 14, 2022
Napa, USA
Solar Media Events
October 4, 2022
New York, USA