GTAT ‘Merlin’ metallisation and interconnect technology reduces silver paste needs by 80%

March 13, 2014
Facebook
Twitter
LinkedIn
Reddit
Email

GT Advanced Technologies (GTAT) has announced an innovative cell metallisation and interconnect technology, dubbed ‘Merlin’ that is expected to provide substantial savings in both the manufacture and installation of solar modules. A key component of the new technology includes a flexible grid that replaces conventional two and three silver bus bars, while significantly reducing solver paste consumption.

Problem

According to TUV Rheinland PTL, a number of key issues have been identified, including solder bond failures, hot spots and ribbon-to-ribbon solder bond failures in conventional cell stringing processes for two and there bus bar configured cells. Cell manufacturers continue to focus on silver paste cost reduction strategies including the need to reduce consumption, while boosting cell conversion efficiencies.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

Solution

The novel attributes of Merlin technology are expected to significantly reduce the amount of expensive silver paste consumed by a cliamed 80%, while improving panel efficiency and reducing module costs by a claimed 10% overall. The resulting modules are expected to be more reliable and durable and enable form factors that are lighter and easier to handle resulting in lower shipment and installations costs. GTAT’s patented Merlin technology easily integrates into existing cell and module manufacturing lines with simple changes to the screen used for patterning segmented fingers onto the solar cell. The segmented fingers are thinner and produce less shading than conventional fingers. The combination of the flexible grid and the segmented fingers results in lower resistive losses thereby increasing cell and module efficiency. Additionally, the on-cell and cell-to-cell interconnect features of the grid make the module substantially more resilient when subjected to temperature cycling and mechanical flexing. Merlin technology will enable customers to design highly reliable, lightweight, lower cost modules that are less expensive to install.

Applications

Solar cell metallisation and interconnect processes.

Platform

Merlin technology uses mature, proven manufacturing processes to produce the flexible grids.

Availability

March 2014 onwards

Read Next

Premium
November 7, 2025
The increasing technical complexity of the renewable energy space has increased the demands on capital raising for those in the sector.
November 7, 2025
JA Solar has signed a module supply agreement with EPC contractor Larsen & Toubro (L&T) for two utility-scale projects in Uzbekistan. 
November 7, 2025
Saatvik Green Energy, through its subsidiary Saatvik Solar Industries, secured solar PV module orders worth INR2.99 billion (US$33.7 million). 
November 7, 2025
The US Geological Survey (USGS) has released the 2025 List of Critical Minerals, which includes silicon and tellurium.
November 7, 2025
Members of the European Parliament are urging the European Commission to restrict Chinese solar inverter manufacturers’ access to the bloc’s energy infrastructure, due to cybersecurity concerns.
November 7, 2025
Renewables asset fund Alantra Solar has secured €355 million to support the development and construction of five solar PV projects in Italy.

Subscribe to Newsletter

Upcoming Events

Upcoming Webinars
November 12, 2025
10am PST / 1pm EST
Solar Media Events
November 25, 2025
Warsaw, Poland
Solar Media Events
December 2, 2025
Málaga, Spain
Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Lisbon, Portugal