KAUST develops cooling technology that increases solar cell longevity by 200%

June 26, 2025
Facebook
Twitter
LinkedIn
Reddit
Email
The cooling technology has registered a higher power output of a solar cell by 12.9%. Image: Markus Spiske via Unsplash.

International researchers led by a team from the King Abdullah University of Science and Technology (KAUST) have developed a new cooling technology that improves the power and longevity of solar cells.

The study also included researchers from King Abdulaziz City for Science and Technology (KACST), and was tested in the Saudi Arabian desert for weeks. The use of the technology increased the power output of a solar cell by 12.9% and extended its longevity by 200%.

This article requires Premium SubscriptionBasic (FREE) Subscription

Try Premium for just $1

  • Full premium access for the first month at only $1
  • Converts to an annual rate after 30 days unless cancelled
  • Cancel anytime during the trial period

Premium Benefits

  • Expert industry analysis and interviews
  • Digital access to PV Tech Power journal
  • Exclusive event discounts

Or get the full Premium subscription right away

Or continue reading this article for free

The new cooling technology was made with a composite material that absorbs air moisture at night and releases it during the day. The scientists found that adhering the material to solar cells operating in coastal Saudi Arabia for weeks have kept the cells cooler while increasing the power output and lifespan.

On top of that, the passive cooling has also resulted in the reduction of the cost of electricity generation by the solar cells by 18%. The researchers have also carried tests in cool parts of mainland US under rainfall to prove the passive cooling technology works under any environment.

The results have been released in a study in Materials Science and Engineering: R, which can be accessed here.

“We specialise in nanomaterials that enable passive cooling. These materials are thin and can be placed on different systems that require cooling to operate, like greenhouses and solar cells, without affecting performance,” said KAUST professor Qiaoqiang Gan, who led the study.

“This work is an excellent example of combining different expertise at KAUST. We tested the new cooling technology on top performing solar cells in multiple environments and saw excellent results in every case,” added professor Steefan De Wolf, whose team provided the solar cells that were tested with the new composite material.

Read Next

January 16, 2026
The Patent Trial and Appeal Board (PTAB) of the US Patent and Trademark Office (USPTO) has partially ruled against solar manufacturer Maxeon in several claims against Canadian Solar.
January 12, 2026
Solar PV solutions provider Nextpower has finalised its Saudi joint venture formation, Nextpower Arabia, which is building a manufacturing facility in the country.
January 6, 2026
Leading Chinese module manufacturer Trinasolar has announced two new agreements with ACWA Power for projects in Saudi Arabia.
December 16, 2025
GameChange Solar will supply 1.2GW of trackers for ACWA Power’s 2GW Khulis solar PV project, currently under construction in Saudi Arabia.
December 9, 2025
ACWA Power and Bapco Energies have signed an agreement to build a 2.8GW solar plant in Saudi Arabia, to be co-located with a BESS.
November 10, 2025
EDF Renewables, in partnership with SPIC HHDC and SAPCO, has secured financing for the 400MW solar PV projects in Saudi Arabia.

Upcoming Events

Solar Media Events
February 3, 2026
London, UK
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA
Solar Media Events
November 3, 2026
Málaga, Spain