Photovoltaics International Papers

Premium
Materials, Photovoltaics International Papers
With more than 80% of PV module demand being satisfied by crystalline-based modules, the health of the silicon and wafer supply chain is of vital importance to the overall PV industry. This paper reviews the overall materials value chain from the manufacture of PV silicon to the wafer, prepared for manufacture of the cell. A glimpse is provided of the various market dynamics that exist in the supply chain, as well as the technology trends that influence or threaten the supply of wafers. Although the manufacturing routes are mature and well established, we also take a look at the possibility of novel and disruptive technologies altering the overall supply landscape.
Premium
Market Watch, Photovoltaics International Papers
Germany and Italy are forecasted to drive solar demand to new highs in 2011, with rumours of installations up to 22GW on the cards for this year. The German and Italian markets, scheduled to peak in 2011 and 2012, respectively, face a potential problem in terms of where to sell their modules if these two countries cannot accommodate 10GW of installations per year. The emerging markets can solve part of this challenge and will deliver new opportunities to the solar industry. Some Asian, European and Middle Eastern regions will require up to of 6GW of solar-generated electricity, while the Americas, Africa and Australia are each projected to install approximately 1GW in 2014. This paper takes a look at the development of these emerging markets and provides a projection of likely installation figures up to 2015.
Premium
Photovoltaics International Papers
One of the busiest of the couple-dozen solar manufacturing factory floors I’ve seen this year belonged to ECD Uni-Solar, at its Auburn Hills 2 (AH2) facility just up the road from the Palace where the NBA’s Detroit Pistons play hoops. When I toured the plant in late July, the three production areas – cell deposition, cell finishing, and module stringing/lamination/final assembly – were humming, as the 1.5-milelong rolls of flexible stainless-steel starting material were transformed into triplejunction amorphous-silicon thin-film PV laminates. The company’s latest quarterly results confirm those observations at the factory, as production output grew some 58% over the previous period – from 21.2MW to 33.6MW – pushing capacity utilization to about 90%.
Premium
Cell Processing, Photovoltaics International Papers
Laser grooved buried contact (LGBC) solar cell technology is proving to be an attractive method of producing solar cells that are designed to operate at one sun and at concentration. Such technology is commercially available at Narec for applications at up to 100 suns. Although LGBC cells can have a higher efficiency at one sun when compared with standard non-selective emitter screen-printed solar cells, a more complex manufacturing process is required for these cells. This paper outlines the approach taken under the FP6 EU funded project “Lab2Line”, in which screen-printing and LGBC solar cell processing techniques are hybridized in order to produce lower cost, high efficiency solar cells.
Premium
Fab & Facilities, Photovoltaics International Papers
The recent 30% decline in module market prices is the most telling sign of a need for continuous reductions in PV production costs. With this in mind, the cost efficiency of production processes is, next to stable product quality, a vital objective in the planning of production facilities. In this paper, the lessons learned in the area of cost of ownership (COO) forecasting methodologies will be analyzed and evaluated for their potential application to investment decisions in the PV industry. This paper will analyze the cost structure of the PV industry with the aim of underlining the importance of a systematic cost-of-ownership approach.
Premium
Fab & Facilities, Photovoltaics International Papers
A major challenge for the solar industry over the next few years is the reduction of production costs on the road to grid parity. Capacity must be increased in order to leverage scaling effects, production and cell efficiency must also be enhanced, and the industry must focus on intensified process optimization and quality control. Laser marking can make a key contribution to fulfilling these requirements. As hard physical coding, laser marking is applied to the raw wafer at the start of the manufacturing process, making each solar cell traceable along the entire value chain and over its whole lifetime. This paper presents Q-Cells’ laser-supported process for coding each individual solar cell (European patent pending), which will require transition work at the laboratory stage before the company’s innovation is ready for mass production.
Premium
Market Watch, Photovoltaics International Papers
The U.S. solar PV market is suffering not from a lack of demand or high prices, but rather from an inconsistent labyrinth of rules and regulations which complicate and prolong uptake. There is significant pent-up demand in the U.S. among developers and especially manufacturers; there is not, however, a commensurate regulatory framework that will enable and encourage this demand to be realized. The U.S. political landscape is deeply divided, and policies that would directly or indirectly effect solar demand are no different from any other in this regard.
Premium
Materials, Photovoltaics International Papers
The minority carrier lifetime is a key parameter for the performance of solar cells as it characterizes the electrical quality of the semiconductor material. Consequently, accurate and reliable methods to determine the minority carrier lifetime are of enormous interest for both practical process control and the evaluation of the potential and limitations of a specific cell concept. Due to its importance, many different lifetime measurement techniques have been developed and used over the past few decades. This paper aims to present and discuss the most common measurement methods on the one hand, while attempting to shed light on some recent developments on the other. The determination of the minority carrier lifetime of crystalline silicon thin-film (cSiTF) material is illustrated as an example of interest for those who are already familiar with standard lifetime characterization.
Premium
Materials, Photovoltaics International Papers
The next generation of industrial silicon solar cells aims at efficiencies of 20% and above. To achieve this goal using ever-thinner silicon wafers, a highly effective surface passivation of the cell, front and rear, is required. In the past, finding a suitable dielectric layer providing a high-quality rear passivation has been a major challenge. Aluminium oxide (Al2O3) grown by atomic layer deposition (ALD) has only recently turned out to be a nearly perfect candidate for such a dielectric. However, conventional ALD is limited to deposition rates well below 2nm/min, which is incompatible with industrial solar cell production. This paper assesses the passivation quality provided by three different industrially relevant techniques for the deposition of Al2O3 layers, namely high-rate spatial ALD, plasma-enhanced chemical vapour deposition (PECVD) and reactive sputtering.
Premium
Materials, Photovoltaics International Papers
Despite the financial crisis and present credit crunch, photovoltaic materials markets experienced only a temporary slide in demand in 2009, with the overall outlook remaining optimistic. This paper presents a strategic analysis review for the materials used in photovoltaic modules, essentially materials for encapsulant, frontsheet, backsheet and anti-reflection coatings. Rising concerns about the need to reduce CO2 emissions and increase the use of renewable energy sources worldwide will stimulate the global photovoltaic market. Feed-in tariffs and politically backed targets boosting renewable energy use will provide further impetus to the photovoltaic market. This, in turn, will have a positive ripple effect on the demand for photovoltaic materials; however, depending on the market share for technology used, i.e. crystalline or thin film for PV energy, the market for materials will be influenced, in addition to advantages and disadvantages of these materials that will influence their market share. With rising awareness about green trends, the future will lie in technologies that offer enhanced energy-efficient solutions at a low cost. Manufacturers who offer products with optimum performance while remaining price-orientated will be poised to gain substantial market share.

Upcoming Events

Solar Media Events
February 3, 2026
London, UK
Upcoming Webinars
February 18, 2026
9am PST / 5pm GMT
Solar Media Events
March 24, 2026
Dallas, Texas
Solar Media Events
April 15, 2026
Milan, Italy
Solar Media Events
June 16, 2026
Napa, USA