Requires Subscription: Photovoltaics International Archive

Cavities observed in PV modules induced by the tabbing and stringing process

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Eric Pilat, CEA-INES, LMPV (Module Laboratory); Manuel Hidalgo, Senior Research Scientist, ARKEMA Sollia Laboratory, LMPV; Dominque Thil, ARKEMA Sollia Laboratory, LMPV; Marion Vite, CEA-INES, LMPV (Module Laboratory)

A major cause of failure in PV modules is related to the penetration of the module by moisture and its retention within. The presence of moisture results in corrosion of metallic contacts or accelerates the molecular degradation of the encapsulant, causing a loss of transparency and in some cases the development of yellowing. The moisture penetration may be intrinsic to the resin itself, but most often it will occur at the interfaces. As a consequence, the adhesion of the resin to glass, metallization, cell and backsheet surfaces may be affected. Engineers involved in the assembly of PV modules used to link adhesion degradation issues to poor conditions for storing polymeric materials, especially the encapsulation resin and the backsheet. In this paper another cause, which has not yet been studied by specialists, is discussed. It is shown that the welding of copper strips can induce residues which prevent the satisfactory adhesion of the resin, resulting in elamination. This phenomenon is identified by ‘spots’ along the busbars after lamination. The study highlights the possible consequences of these defects for a module’s performance, after consecutive thermal cycling, damp-heat and humidity-freeze testing. Recommendations are also given for choosing a suitable solder flux and optimizing the soldering process, in order to maintain satisfactory control over potential delamination problems.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy81OGEwZmQ0NWYzLWNhdml0aWVzLW9ic2VydmVkLWluLXB2LW1vZHVsZXMtaW5kdWNlZC1ieS10aGUtdGFiYmluZy1hbmQtc3RyaW5naW5nLXByb2Nlc3MucGRm

Published In

Photovoltaics International Archive
For manufacturers who had their heads in the bunker during 2012, fighting falling ASPs and eroding margins, the nineteenth edition brings you details of what lies in store for this coming year. Wright Williams & Kelly return in this issue with their popular analysis of payback on technology buys; crucially they analyze n-type wafers, Al2O3 passivation and copper metallization. SERIS shows us how to achieve 18.7% efficiencies using low-cost etching techniques on diffused wafers. We also have two important technology roundups: CIGS from Helmholtz Berlin, and PV module encapsulation techniques from Fraunhofer ISE.

Read Next

Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The holy grail of every solar cell producer is the creation of a lowcost interdigitated back-contact (IBC) solar cell with an efficiency greater than 25%, a goal that can be found in almost every roadmap presentation. In this paper it will be shown that we are not far away from achieving this target, since IBC devices, with different process complexities, are already in production at several companies.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper will accordingly outline the recent activities at CEA-INES concerning the development and understanding of the integration of such shingle cells.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
In this paper, an even greater reduction in wafer thickness, down to 130μm, is evaluated, and the critical steps in terms of breakage rates in cell and module production processes are reviewed. Finally, the mechanical stability and reliability of these thin HJT cells in glass–backsheet and glass–glass module types are addressed.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper provides a short overview of historical developments, presents the main approaches in mass production today, discusses potential process simplifications, and briefly touches upon a key topic for the future, namely reducing the silver (Ag) consumption per cell.
Photovoltaics International Archive
Fab & Facilities, Photovoltaics International Papers
This paper discusses what approaches from the digitalization field can be used quickly and easily to accelerate ramp-up, to analyse overlapping data and to improve production either manually or automatically.
Photovoltaics International Archive
Fab & Facilities, Photovoltaics International Papers
To embrace the terawatt-scale challenge of the PV market growth, a low-carbon and resource-efficient pathway has to be guaranteed. An approach for doing this is to enable market mechanisms that account for the greenhouse gases emissions, and their associated costs, from PV systems and components.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
October 6, 2021
Solar Media Events
October 19, 2021
BRISTOL, UK
Solar Media Events
December 1, 2021