PVI Paper

Encapsulation polymers - a key issue in module reliability

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Stefan-H. Schulze, Polymeric Materials Team Leader, Fraunhofer CSP; Matthias Pander, Scientist, Module Reliability Team, Fraunhofer CSP; Sascha Dietrich, Head of the Module Reliability Team, Fraunhofer CSP; Dr. Matthias Ebert, Group Leader of Solar Modules, Fraunhofer CSP

The majority of solar module manufacturers use ethylene-vinyl acetate (EVA) copolymer foils as the encapsulant material for solar cells and thin-film modules. Because EVA needs long processing times for curing, thermoplastic process materials that do not employ chemical cross-linking have been coming more and more into focus in the encapsulation sector. This paper takes a look at the mechanical temperature-dependent properties of a variety of such materials.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy9hYjM4MDQyYjVlLWVuY2Fwc3VsYXRpb24tcG9seW1lcnMtYS1rZXktaXNzdWUtaW4tbW9kdWxlLXJlbGlhYmlsaXR5LnBkZg==

Published In

PVI Issue
The eleventh edition of Photovoltaics International was published in February 2011 and features a special focus on PV modules from Fraunhofer CSP, SunPower and Heriot-Watt University. In addition, China Sunergy studies dark lines on mc-Si cells in Cell Processing and TU Freiburg looks at the challenges of the wire saw wafering process in Materials.

Read Next

PVI Paper
Cell Processing, Photovoltaics International Papers
This paper presents preliminary results of SERIS’ biPolyTM cell: the bifacial application of polysiliconbased passivating contact stacks with front and rear screen-printed and fired metallization.
PVI Paper
Cell Processing, Photovoltaics International Papers
This work reports the latest results obtained at Jolywood for full-area (251.99cm2) n-type bifacial passivating-contact solar cells using a cost-effective process with industrially-feasible boron diffusion, phosphorus ion implantation and low-pressure chemical vapour deposition (LPCVD) with in situ oxidation.
PVI Paper
Cell Processing, Photovoltaics International Papers
This paper reviews the key technology improvements which have enabled a continuous 0.5%abs/year increase in efficiency of industrial PERC and PERC+ cells.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper provides a concise overview of existing c-Si-based 2-, 3- and 4-terminal tandem technologies, summarizes the current development status, and sets out the future roadmap. In addition, a discussion is included of what will be required over the coming years to bring these promising technologies to market, enabling commercial efficiencies above 30%.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper discusses, at both the cell and the module level, the balance between the advantages and drawbacks of increasing the cell bifaciality from a typical value of 90% towards 100%, or decreasing it towards that of monofacial cells (0%).
PVI Paper
Photovoltaics International Papers, PV Modules
Because it leads to higher efficiencies than aluminium back-surface field (Al-BSF) cells, passivated emitter and rear cell (PERC) technology is attracting more and more attention in the industry and gaining market share. However, PERC technology brings new challenges with regard to the phenomenon of degradation: some monofacial/bifacial PERC cell modules were found to demonstrate much higher power degradation than Al-BSF cell modules after damp-heat (DH: 85°C and 85% relative humidity RH, 1000h) and potential-induced degradation (PID: 85°C and 85% RH, –1,500V, 96h) tests, which will be the focus of this paper.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
March 9, 2021
Solar Media Events
March 17, 2021
Solar Media Events
April 13, 2021
Solar Media Events
April 20, 2021
Get 50% off!
Subscribe before 5th of April 2020!