PVI Paper

Existing and emerging laser applications within PV Manufacturing

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Finlay Colville, Director of Marketing, Solar, Cohenernt, Inc.; Corey Dunsky, Manager of Commercial Applications Center, Cohenernt, Inc.; Jim Hopkins, General Manager of the Integrated Optics System Business Unit, Cohenernt, Inc.

Increasing the efficiency and yield of production line processes forms an integral part of PV manufacturers’ technology roadmaps. For their next generation production lines, non-contact processing equipment is considered essential. This prioritizes laser-based processing, already established at several steps in c-Si and Thin-Film cell manufacturing. This paper summarizes the key issues when using lasers within PV production lines.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy9kY2YxYWFlOGJmLWV4aXN0aW5nLWFuZC1lbWVyZ2luZy1sYXNlci1hcHBsaWNhdGlvbnMtd2l0aGluLXB2LW1hbnVmYWN0dXJpbmcucGRm

Published In

PVI Issue
The first edition of the Photovoltaics International journal, published in August 2008, was created in response to what was deemed to be a growing need for an unbiased technical publication for the solar cell and module manufacturing industry. With this in mind, the first edition of Photovoltaics International saw the commissioning of papers from a wide range of sectors, such as NREL’s overview of the CPV sector, IMEC’s thin-film efficiency gains via plasma texturing, site selection with IBM PLI, Q-Cells on silicon nitride thin films and Navigant Consulting’s market overview.

Read Next

PVI Paper
Cell Processing, Photovoltaics International Papers
This paper presents preliminary results of SERIS’ biPolyTM cell: the bifacial application of polysiliconbased passivating contact stacks with front and rear screen-printed and fired metallization.
PVI Paper
Cell Processing, Photovoltaics International Papers
This work reports the latest results obtained at Jolywood for full-area (251.99cm2) n-type bifacial passivating-contact solar cells using a cost-effective process with industrially-feasible boron diffusion, phosphorus ion implantation and low-pressure chemical vapour deposition (LPCVD) with in situ oxidation.
PVI Paper
Cell Processing, Photovoltaics International Papers
This paper reviews the key technology improvements which have enabled a continuous 0.5%abs/year increase in efficiency of industrial PERC and PERC+ cells.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper provides a concise overview of existing c-Si-based 2-, 3- and 4-terminal tandem technologies, summarizes the current development status, and sets out the future roadmap. In addition, a discussion is included of what will be required over the coming years to bring these promising technologies to market, enabling commercial efficiencies above 30%.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper discusses, at both the cell and the module level, the balance between the advantages and drawbacks of increasing the cell bifaciality from a typical value of 90% towards 100%, or decreasing it towards that of monofacial cells (0%).
PVI Paper
Photovoltaics International Papers, PV Modules
Because it leads to higher efficiencies than aluminium back-surface field (Al-BSF) cells, passivated emitter and rear cell (PERC) technology is attracting more and more attention in the industry and gaining market share. However, PERC technology brings new challenges with regard to the phenomenon of degradation: some monofacial/bifacial PERC cell modules were found to demonstrate much higher power degradation than Al-BSF cell modules after damp-heat (DH: 85°C and 85% relative humidity RH, 1000h) and potential-induced degradation (PID: 85°C and 85% RH, –1,500V, 96h) tests, which will be the focus of this paper.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
March 9, 2021
Solar Media Events
March 17, 2021
Solar Media Events
April 13, 2021
Solar Media Events
April 20, 2021
Get 50% off!
Subscribe before 5th of April 2020!