Premium

Fabrication of high-power CIGS modules by two-stage processing, and analysis of the manufacturing cost

Facebook
Twitter
LinkedIn
Reddit
Email

By Kyung Nam Kim, Green School, Korea University, Seoul; Yoonmook Kang, Green School, Korea University, Seoul; Jeong Min Lee, Wonik IPS, Gyeonggi-Do, South Korea; Dong Seop Kim, Wonik IPS, Gyeonggi-Do, South Korea

Of the various copper indium gallium diselenide (CIGS)-formation processes, a so-called ‘two-stage process’, consisting of sputtering and selenization, has been successfully applied in large-scale production thanks to its stable process scheme and high-fidelity production equipment. A CIGS module with a power of 231W, corresponding to a total area-based efficiency of 16% for 902mm × 1,602mm, was demonstrated when this twostage process was employed in a pilot production line at Samsung (although all the technology concerning CIGS production has now been transferred to Wonik IPS, whose main business is to provide production equipment for the semiconductor and display industry). The high-power module suggests significant potential for CIGS modules to compete with multicrystalline Si modules in terms of both cost and performance. This paper addresses the
important process technologies for achieving high efficiency on large-area substrates, and presents a cost analysis using the data obtained from the operation of the pilot production line. As a result of the synergistic effect of low material cost and high efficiency of the two-stage process, the CIGS manufacturing cost is expected to be reduced to US$0.34/W.

Published In

Premium
Forecasting the evolution of a young, dynamic industry is by definition an uncertain business, and solar is no exception. Rarely, if ever, do the numbers broadcast by any of the various bodies involved in the PV prediction game tally, and even historical deployment rates remain the subject of hot debate. The paradox is that getting forecasts broadly right is going to become increasingly important over the next few years, particularly for those involved in producing the equipment that will support whatever levels of demand come to pass. As discussed by Gaëtan Masson, director of the Becquerel Institute, on p.110 of this issue of Photovoltaics International, although global PV demand appears in rude health, complex political and economic conditions in many individual markets mean the question of how vigorously it will continue to grow in the coming years is less than clear. Yet for the upstream part of the industry, correctly forecasting PV market developments will be critical to ensure the right investments are made along the value chain in technologies that will help spur PV to new levels of competitiveness and thus drive continued demand.

Read Next

Subscribe to Newsletter

Upcoming Events

Solar Media Events
July 2, 2024
Athens, Greece
Solar Media Events
July 9, 2024
Sands Expo and Convention Centre, Singapore
Solar Media Events
September 24, 2024
Warsaw, Poland
Solar Media Events
September 24, 2024
Singapore, Asia