PVI Paper

Final testing: a secure release gate towards module manufacturing

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Nico Ackermann, Q-Cells SE; Volker Gutewor, Q-Cells SE; Michael Quinque, Leader in the Metrology Departmen, Q-Cells SE; Marcel Kuehne, Q-Cells SE; Elard G. Stein von Kamienski, Head of Measurement Technology and Process Analysis, Q-Cells SE; Achim Schulze, Q-Cells SE; Ralph Wichtendahl, Head of Analysis and Modelling, Q-Cells SE

Among all of the tests performed in the production chain of solar cells, each with the scope of production control and the aim of driving engineering improvements, the electrical final test is certainly the most important. The final test defines the gate to module manufacturing and has a direct impact on finances and customer satisfaction. The test procedure itself is well known and continues to undergo constant further development, but that shall not be the scope of this article. This paper will elucidate on the issues faced by bringing these tests into high volume production, highlighting some issues on measurement accuracy and degradation of the internal calibration standards. In addition to pure electrical testing, the paper will discuss the Q-Cells approach to identifying hot spots and subsequent binning of the affected cells without adding process time to the test procedure, and will show their straightforward correlation to heat generation of these hot spots in real-life condition-encapsulated module tests.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy9mZDM1NTA4YTMzLWZpbmFsLXRlc3RpbmctYS1zZWN1cmUtcmVsZWFzZS1nYXRlLXRvd2FyZHMtbW9kdWxlLW1hbnVmYWN0dXJpbmcucGRm

Published In

PVI Issue
The eighth edition of Photovoltaics International was published in May 2010. In this issue Enerplan address how the new FiT will impact the French Market, in Materials IBM and NREL discuss the pros and cons of UMG silicon and DERlab puts single-phase inverters to the test in Power Generation.

Read Next

PVI Paper
Cell Processing, Photovoltaics International Papers
This paper presents preliminary results of SERIS’ biPolyTM cell: the bifacial application of polysiliconbased passivating contact stacks with front and rear screen-printed and fired metallization.
PVI Paper
Cell Processing, Photovoltaics International Papers
This work reports the latest results obtained at Jolywood for full-area (251.99cm2) n-type bifacial passivating-contact solar cells using a cost-effective process with industrially-feasible boron diffusion, phosphorus ion implantation and low-pressure chemical vapour deposition (LPCVD) with in situ oxidation.
PVI Paper
Cell Processing, Photovoltaics International Papers
This paper reviews the key technology improvements which have enabled a continuous 0.5%abs/year increase in efficiency of industrial PERC and PERC+ cells.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper provides a concise overview of existing c-Si-based 2-, 3- and 4-terminal tandem technologies, summarizes the current development status, and sets out the future roadmap. In addition, a discussion is included of what will be required over the coming years to bring these promising technologies to market, enabling commercial efficiencies above 30%.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper discusses, at both the cell and the module level, the balance between the advantages and drawbacks of increasing the cell bifaciality from a typical value of 90% towards 100%, or decreasing it towards that of monofacial cells (0%).
PVI Paper
Photovoltaics International Papers, PV Modules
Because it leads to higher efficiencies than aluminium back-surface field (Al-BSF) cells, passivated emitter and rear cell (PERC) technology is attracting more and more attention in the industry and gaining market share. However, PERC technology brings new challenges with regard to the phenomenon of degradation: some monofacial/bifacial PERC cell modules were found to demonstrate much higher power degradation than Al-BSF cell modules after damp-heat (DH: 85°C and 85% relative humidity RH, 1000h) and potential-induced degradation (PID: 85°C and 85% RH, –1,500V, 96h) tests, which will be the focus of this paper.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
March 9, 2021
Solar Media Events
March 17, 2021
Solar Media Events
April 13, 2021
Solar Media Events
April 20, 2021
Get 50% off!
Subscribe before 5th of April 2020!