Investigation of the curing reaction of EVA by DSC and DMA


By Markus Schubnell, University of Applied Sciences Northwestern Switzerland

In today’s PV modules, the solar cells are commonly encapsulated in EVA. During lamination EVA undergoes a crosslinking reaction. From a practical point of view, two major interests arise. For quality control purposes, one needs to know the degree of curing of the EVA encapsulant after lamination. The focus in process optimization is on understanding the kinetics of the crosslinking as a chemical reaction. If this is known (and proven), one can predict appropriate crosslinking conditions (i.e. lamination temperature and time) that have to be matched to reach a certain degree of crosslinking. This contribution mostly deals with this latter aspect. DSC as well as DMA data and model-free kinetics were used in this study to establish the kinetics of the EVA crosslinking process. It was found that both techniques adequately predict the degree of crosslinking for any temperature as a function of the curing time.

Published In

The seventh edition of Photovoltaics International was published in February 2010. This edition features a wafering focus from REC Wafer and SINTEF on how to improve cell efficiencies. In addition, EPIA provides in-depth analysis of feed-in-tariff schemes in our Market Watch; and in Cell Processing Fraunhofer ISE overcomes challenges in back-side metallization.

Read Next

Subscribe to Newsletter

Upcoming Events

Solar Media Events
March 12, 2024
Frankfurt, Germany
Upcoming Webinars
March 13, 2024
9am EDT / 1pm GMT / 2pm CET
Solar Media Events
March 19, 2024
Texas, USA