Requires Subscription: Photovoltaics International Archive

Life cycle analysis of modules: A multicrystalline silicon case study Trond Westgaard, Renewable Ene

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Trond Westgaard, Vice President of Technology, Renewable Energy Corporation; Carol Olson, Project Manager, Energy Research Centre of the Netherlands; Ton Veltkamp, Manager, Crystalline Silicon Photovoltaics Manufacturing Technology Group, Energy Research Centre of the Netherlands

The improved performance and reduced manufacturing costs of photovoltaic (PV) modules that have been achieved in recent years have positioned this technology as an economically attractive renewable electric energy source. In order to verify that this also has a positive impact on energy payback time (EPBT) and carbon footprint, the Energy Research Centre of the Netherlands (ECN) has conducted a life cycle analysis (LCA) for REC Peak Energy-series PV modules produced by Renewable Energy Corporation (REC). The LCA study was based on a full set of actual production data obtained for the first quarter of 2011 from REC’s manufacturing sites. Because REC is an integrated manufacturer, the LCA study includes internal data for the production steps from polysilicon production to module assembly, as well as for all materials and transportation associated with production. ECN used generic figures for installation, operations and recycling together with the REC data to assess the environmental impact indicators. For polysilicon produced in the USA, and for wafers, cells and modules produced in Singapore, an EPBT of 1.2 years was achieved, with a corresponding carbon footprint of 21g CO2-eq/kWh for PV systems located in southern Europe (1700kWh/m2year irradiation). For modules with wafers and cells produced in Norway, the corresponding values were 1.1 years and 18g CO2-eq/kWh. A key contributor in achieving these values is REC’s highly efficient fluidized bed reactor (FBR) process for the production of polysilicon.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy8wNjY5MDRkMDVjLWxpZmUtY3ljbGUtYW5hbHlzaXMtb2YtbW9kdWxlcy1hLW11bHRpY3J5c3RhbGxpbmUtc2lsaWNvbi1jYXNlLXN0dWR5LXRyb25kLXdlc3RnYWFyZC1yZW5ld2FibGUtZW5lLnBkZg==

Published In

Photovoltaics International Archive
The 15th edition of Photovoltaics International hopes to bring some optimism to 2012 by tackling the key factors on how to cope with the current situation. Contributions come from MIT on using TCAD as a viable method for modelling metal impurity evolution; Alternative Energy Investing presents a comprehensive look at materials cost; and efficiency improvements are on offer by ECN. REC Solar and Tata BP Solar report on module lifetime and IMS Research gives us a brief rundown of 2012 global market expectations.

Read Next

Photovoltaics International Archive
Photovoltaics International Papers, PV Modules
With mature product offerings now available from several of the leading industrial PV equipment and tool manufacturers, and latest-generation ECAs available from suppliers, this article aims to provide important background information on ECAs, as well as give a brief overview of some of the challenges and cutting-edge developments in ECA-related PV applications.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper reviews those associated fabrication technologies for the mass production of Ni/Cu-plated contacts. The technologies currently in use in the PV industry for plated contacts, as well as the developing technologies having high scaling-up potential, will be reviewed. In addition, the future requirements for plating metallization will be discussed.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper discusses what is actually behind these announcements and how an evolutionary industry sector such as PVis becoming, it seems, decidedly revolutionary with large jumps in efficiency.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper presents an analysis and the results of extensive simulations of the efficiency limits and roadmap to 25.5% of a tunnel oxide passivated contact (TOPCon) solar cell, on the basis of an efficiency level of 25.21% (designed area, identified by ISFH) achieved through three years of continuous technical optimization on a pilot line at Longi.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The development of new ways of increasing the production throughput for passivated emitter and rear cells (PERCs), as the major solar cell technology in the global market, is an area of great interest to the PV community. This paper presents approaches for significantly increasing the throughput of PERC production processes. The main focus is on the tube furnace processes for the emitter formation and oxidation, with the introduction of the High Temperature Stack Oxidation (HiTSOx) approach. Additional approaches that are currently under investigation at Fraunhofer ISE for increasing the throughput for wet-chemical, printing and laser processes will also be briefly outlined.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The holy grail of every solar cell producer is the creation of a lowcost interdigitated back-contact (IBC) solar cell with an efficiency greater than 25%, a goal that can be found in almost every roadmap presentation. In this paper it will be shown that we are not far away from achieving this target, since IBC devices, with different process complexities, are already in production at several companies.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
June 14, 2022
Napa, USA
Solar Media Events
October 4, 2022
New York, USA