PVI Paper

Multicrystalline PERC solar cells: Is light-induced degradation challenging the efficiency gain of rear passivation?

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Tabea Luka, Christian Hagendorf & Marko Turek, Fraunhofer Center for Silicon Photovoltaics CSP, Halle (Saale), Germany

The passivated emitter and rear cell (PERC) process has been successfully transferred to mass production, with the market share of multicrystalline (mc) silicon being around 50%. This new technology can, however, lead to severe reliability issues despite the higher initial solar cell efficiencies. In particular, light-induced degradation (LID) of mc-PERC solar cells has been reported to cause efficiency losses of up to 10%rel. This highlights the importance of understanding different types of LID and of testing the stability of solar cells under actual operating conditions.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy82Y2Y4YTVkMTZiLW11bHRpY3J5c3RhbGxpbmUtcGVyYy1zb2xhci1jZWxscy1pcy1saWdodGluZHVjZWQtZGVncmFkYXRpb24tY2hhbGxlbmdpbmctdGhlLWVmZmljaWVuY3ktZ2Fpbi1vZi1yZWFyLXBhc3NpdmF0aW9uLnBkZg==

Published In

PVI Issue
This issue of Photovoltaics International focuses on the steady adoption of PERC as the technology of choice for providing a quick boost to cell performances. Our chief analyst, Finlay Colville, reports that PERC is a key driver for internal technology roadmaps of all silicon cell providers and is indirectly influencing the development of other technologies in competing n-type and thin-film segments. However, PERC is not without its drawbacks, and one of these is its increased susceptibility to light-induced degradation. Other highlights include ISC Konstanz on the future of back-contact technology and ECN on the development of a new technique for minimising recombination losses in silicon solar cells.

Read Next

PVI Paper
Cell Processing, Photovoltaics International Papers
This paper presents preliminary results of SERIS’ biPolyTM cell: the bifacial application of polysiliconbased passivating contact stacks with front and rear screen-printed and fired metallization.
PVI Paper
Cell Processing, Photovoltaics International Papers
This work reports the latest results obtained at Jolywood for full-area (251.99cm2) n-type bifacial passivating-contact solar cells using a cost-effective process with industrially-feasible boron diffusion, phosphorus ion implantation and low-pressure chemical vapour deposition (LPCVD) with in situ oxidation.
PVI Paper
Cell Processing, Photovoltaics International Papers
This paper reviews the key technology improvements which have enabled a continuous 0.5%abs/year increase in efficiency of industrial PERC and PERC+ cells.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper provides a concise overview of existing c-Si-based 2-, 3- and 4-terminal tandem technologies, summarizes the current development status, and sets out the future roadmap. In addition, a discussion is included of what will be required over the coming years to bring these promising technologies to market, enabling commercial efficiencies above 30%.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper discusses, at both the cell and the module level, the balance between the advantages and drawbacks of increasing the cell bifaciality from a typical value of 90% towards 100%, or decreasing it towards that of monofacial cells (0%).
PVI Paper
Photovoltaics International Papers, PV Modules
Because it leads to higher efficiencies than aluminium back-surface field (Al-BSF) cells, passivated emitter and rear cell (PERC) technology is attracting more and more attention in the industry and gaining market share. However, PERC technology brings new challenges with regard to the phenomenon of degradation: some monofacial/bifacial PERC cell modules were found to demonstrate much higher power degradation than Al-BSF cell modules after damp-heat (DH: 85°C and 85% relative humidity RH, 1000h) and potential-induced degradation (PID: 85°C and 85% RH, –1,500V, 96h) tests, which will be the focus of this paper.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
March 9, 2021
Solar Media Events
March 17, 2021
Solar Media Events
April 13, 2021
Solar Media Events
April 20, 2021
Get 50% off!
Subscribe before 5th of April 2020!