Requires Subscription: Photovoltaics International Archive

Plasma-enhanced chemical vapour deposition of ZnO for photovoltaic TCO application

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Jenny Schmidt; Alexander Michaelis; Isabel Kinski

In terms of material properties, plasma-enhanced chemical vapour deposition (PECVD) of ZnO has advantages over sputtering techniques, due to the variety of available precursors, and the different dopants for achieving certain levels of n-type and, controversially discussed, p-type transparent conductive oxides (TCOs) on various substrate materials. This paper considers the deposition of boron-doped zinc oxide for n-type TCO-application on substrates of dimensions up to 50×50cm2 and at a temperature range of 50 to 450°C using a PECVD reactor with a plasma frequency of 13.56MHz. The materials’ characteristics such as transparency, carrier concentration and structural properties are discussed as a function of the deposition parameters. The deposition temperature strongly affects the crystallographic and morphological appearance of the deposited thin films, which was investigated using field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD) methods. The electronic band structure-dependent characteristics were studied using ultraviolet-visible (UV-vis) spectroscopy and Hall measurements. Secondary ion mass spectrometry (SIMS) measurements complete the characterization methods for qualitatively verifying the incorporation of dopants and impurities. Results are reported for columnar-grown boron-doped ZnO with optical transparency greater than 80% in the visible range and a maximum carrier concentration of 1020cm-3.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy84NmZkZGJlODI3LXBsYXNtYWVuaGFuY2VkLWNoZW1pY2FsLXZhcG91ci1kZXBvc2l0aW9uLW9mLXpuby1mb3ItcGhvdG92b2x0YWljLXRjby1hcHBsaWNhdGlvbi5wZGY=

Published In

Photovoltaics International Archive
Published in November 2011, the 14th edition of Photovoltaics International provides a variety of technical papers from some of the industry’s stalwarts. Features include: TÜV Rheinland on junction box testing; Laser Zentrum Hannover on laser edge isolation of mc-Si cells; Calisolar on the importance of traceability; Fraunhofer ISE on EWT cells; and EPIA on Europe’s LCOE.

Read Next

Photovoltaics International Archive
Photovoltaics International Papers, PV Modules
With mature product offerings now available from several of the leading industrial PV equipment and tool manufacturers, and latest-generation ECAs available from suppliers, this article aims to provide important background information on ECAs, as well as give a brief overview of some of the challenges and cutting-edge developments in ECA-related PV applications.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper reviews those associated fabrication technologies for the mass production of Ni/Cu-plated contacts. The technologies currently in use in the PV industry for plated contacts, as well as the developing technologies having high scaling-up potential, will be reviewed. In addition, the future requirements for plating metallization will be discussed.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper discusses what is actually behind these announcements and how an evolutionary industry sector such as PVis becoming, it seems, decidedly revolutionary with large jumps in efficiency.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper presents an analysis and the results of extensive simulations of the efficiency limits and roadmap to 25.5% of a tunnel oxide passivated contact (TOPCon) solar cell, on the basis of an efficiency level of 25.21% (designed area, identified by ISFH) achieved through three years of continuous technical optimization on a pilot line at Longi.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The development of new ways of increasing the production throughput for passivated emitter and rear cells (PERCs), as the major solar cell technology in the global market, is an area of great interest to the PV community. This paper presents approaches for significantly increasing the throughput of PERC production processes. The main focus is on the tube furnace processes for the emitter formation and oxidation, with the introduction of the High Temperature Stack Oxidation (HiTSOx) approach. Additional approaches that are currently under investigation at Fraunhofer ISE for increasing the throughput for wet-chemical, printing and laser processes will also be briefly outlined.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The holy grail of every solar cell producer is the creation of a lowcost interdigitated back-contact (IBC) solar cell with an efficiency greater than 25%, a goal that can be found in almost every roadmap presentation. In this paper it will be shown that we are not far away from achieving this target, since IBC devices, with different process complexities, are already in production at several companies.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
June 14, 2022
Napa, USA
Solar Media Events
October 4, 2022
New York, USA