PVI Paper

PV facilities: opportunities for conversion and re-use of semiconductor fabs

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Nate Monosoff, Technologist, CH2M HILL

Crystalline wafer and thin-film photovoltaics manufacturing have experienced dramatic expansion in recent years, but future growth requires increasingly effective strategies to reduce costs and increase the competitiveness of PV power. Reducing PV manufacturing costs has been a prime focus of the industry. In the current climate, cost reduction is especially critical given the industry shakeout that many analysts are forecasting. Now more than ever, it is important to bring manufacturing capacity online quickly and cost effectively. The vast majority of commercial-scale PV manufacturing capacity is new construction (greenfield), meaning it is purpose-built on an unused piece of land; however, there are alternatives. This paper will outline opportunities for re-use of existing obsolete semiconductor fabs, and the steps required to convert from one manufacturing strand to another.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy80NWUzNzJlYjE5LXB2LWZhY2lsaXRpZXMtb3Bwb3J0dW5pdGllcy1mb3ItY29udmVyc2lvbi1hbmQtcmV1c2Utb2Ytc2VtaWNvbmR1Y3Rvci1mYWJzLnBkZg==

Published In

PVI Issue
The second edition of Photovoltaics International was published in November 2008. It includes the cost benefits of conversion of used 200mm semiconductor fabs for the PV industry by CH2M Hill in Fab & Facilities, in-line plasma-chemical etching from Fraunhofer IWS in Cell Processing and NREL presents design criteria for back- and front-sheet materials in PV Modules.

Read Next

PVI Paper
Cell Processing, Photovoltaics International Papers
This paper presents preliminary results of SERIS’ biPolyTM cell: the bifacial application of polysiliconbased passivating contact stacks with front and rear screen-printed and fired metallization.
PVI Paper
Cell Processing, Photovoltaics International Papers
This work reports the latest results obtained at Jolywood for full-area (251.99cm2) n-type bifacial passivating-contact solar cells using a cost-effective process with industrially-feasible boron diffusion, phosphorus ion implantation and low-pressure chemical vapour deposition (LPCVD) with in situ oxidation.
PVI Paper
Cell Processing, Photovoltaics International Papers
This paper reviews the key technology improvements which have enabled a continuous 0.5%abs/year increase in efficiency of industrial PERC and PERC+ cells.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper provides a concise overview of existing c-Si-based 2-, 3- and 4-terminal tandem technologies, summarizes the current development status, and sets out the future roadmap. In addition, a discussion is included of what will be required over the coming years to bring these promising technologies to market, enabling commercial efficiencies above 30%.
PVI Paper
Photovoltaics International Papers, Thin Film
This paper discusses, at both the cell and the module level, the balance between the advantages and drawbacks of increasing the cell bifaciality from a typical value of 90% towards 100%, or decreasing it towards that of monofacial cells (0%).
PVI Paper
Photovoltaics International Papers, PV Modules
Because it leads to higher efficiencies than aluminium back-surface field (Al-BSF) cells, passivated emitter and rear cell (PERC) technology is attracting more and more attention in the industry and gaining market share. However, PERC technology brings new challenges with regard to the phenomenon of degradation: some monofacial/bifacial PERC cell modules were found to demonstrate much higher power degradation than Al-BSF cell modules after damp-heat (DH: 85°C and 85% relative humidity RH, 1000h) and potential-induced degradation (PID: 85°C and 85% RH, –1,500V, 96h) tests, which will be the focus of this paper.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
March 9, 2021
Solar Media Events
March 17, 2021
Solar Media Events
April 13, 2021
Solar Media Events
April 20, 2021