Requires Subscription: Photovoltaics International Archive

PV trade barriers: Strategies for Chinese and Taiwanese producers

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on reddit
Reddit
Share on email
Email

By Matthias Grossmann, Business Development Manager, Viridis.iQ GmbH

The latest rounds of formal complaints against alleged breaches of trade agreements, the initiation of circumvention investigations, and preliminary announcements and rulings in various countries and trading zones all demonstrate that the multidimensional trade conflict in global PV markets is far from being resolved and is still simmering. The trade dispute is largely focused on the import of downstream products (c-Si wafer, cell and module) in current and prospective high-volume markets, such as the EU, the USA and potentially India. These
nations or trading zones have implemented, or have proposed to implement, anti-dumping and countervailing duties, predominantly targeted against Chinese downstream producers. New rounds of investigations might lead to existing tariffs being extended to Taiwanese manufacturers that directly or indirectly import into the USA, while the EU might scrap a previous quota and minimum price system and revert to tariffs. This paper gives a brief historical review of the global PV trade dispute, and analyses the formal and legal grounding of anticircumvention actions, which in general increase the complexities of business planning. Because more than 70% of the global downstream manufacturing capacity is located in China and Taiwan, the manufacturers in these regions have no choice but to embrace an internationalization strategy that consists of production offshoring. The paper concludes with the introduction of potential strategies and recommendations which take account of
increased complexities and uncertainties in business planning that arise from shifting trade barriers.

L3dwLWNvbnRlbnQvdXBsb2Fkcy9sZWdhY3ktcHVibGljYXRpb24tcGRmcy82M2NkYzY3OGNmLXB2LXRyYWRlLWJhcnJpZXJzLXN0cmF0ZWdpZXMtZm9yLWNoaW5lc2UtYW5kLXRhaXdhbmVzZS1wcm9kdWNlcnMucGRm

Published In

Photovoltaics International Archive
In this issue we offer some insights into what the next wave of photovoltaic technologies may look like as that upturn gathers pace. Industry observers have been in broad agreement that the major next-gen PV technology innovations won’t happen straight away. But there’s also little doubt that the search is now on in earnest for the breakthroughs that will come to define the state of the art in the industry in the years to come.

Read Next

Photovoltaics International Archive
Photovoltaics International Papers, PV Modules
With mature product offerings now available from several of the leading industrial PV equipment and tool manufacturers, and latest-generation ECAs available from suppliers, this article aims to provide important background information on ECAs, as well as give a brief overview of some of the challenges and cutting-edge developments in ECA-related PV applications.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper reviews those associated fabrication technologies for the mass production of Ni/Cu-plated contacts. The technologies currently in use in the PV industry for plated contacts, as well as the developing technologies having high scaling-up potential, will be reviewed. In addition, the future requirements for plating metallization will be discussed.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper discusses what is actually behind these announcements and how an evolutionary industry sector such as PVis becoming, it seems, decidedly revolutionary with large jumps in efficiency.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
This paper presents an analysis and the results of extensive simulations of the efficiency limits and roadmap to 25.5% of a tunnel oxide passivated contact (TOPCon) solar cell, on the basis of an efficiency level of 25.21% (designed area, identified by ISFH) achieved through three years of continuous technical optimization on a pilot line at Longi.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The development of new ways of increasing the production throughput for passivated emitter and rear cells (PERCs), as the major solar cell technology in the global market, is an area of great interest to the PV community. This paper presents approaches for significantly increasing the throughput of PERC production processes. The main focus is on the tube furnace processes for the emitter formation and oxidation, with the introduction of the High Temperature Stack Oxidation (HiTSOx) approach. Additional approaches that are currently under investigation at Fraunhofer ISE for increasing the throughput for wet-chemical, printing and laser processes will also be briefly outlined.
Photovoltaics International Archive
Cell Processing, Photovoltaics International Papers
The holy grail of every solar cell producer is the creation of a lowcost interdigitated back-contact (IBC) solar cell with an efficiency greater than 25%, a goal that can be found in almost every roadmap presentation. In this paper it will be shown that we are not far away from achieving this target, since IBC devices, with different process complexities, are already in production at several companies.

Subscribe to Newsletter

Upcoming Events

Solar Media Events
June 14, 2022
Napa, USA
Solar Media Events
October 4, 2022
New York, USA